$(001)\beta$ - Ga_2O_3 ショットキーバリアダイオードのリーク電流と結晶欠陥との関係

Relationship of crystal defects and leakage current of

(001) β-Ga₂O₃ Schottky barrier diodes

○橋口 明広¹, 森林 朋也¹, 大島 孝仁¹, 大石 敏之¹, 輿 公祥², 佐々木 公平², 倉又 朗人², 上田 修³, [†]嘉数 誠¹ (佐賀大院工¹, タムラ製作所², 金沢工大³)

OA. Hashiguchi¹, T. Moribayashi¹, T. Oshima¹, T. Oishi¹, K. Koshi², K. Sasaki²,

A. Kuramata², O. Ueda³, [†]M. Kasu¹ (Saga Univ.¹, Tamura Corp.², Kanazawa Inst. Tech.³)

E-mail: O16576017@edu.cc.saga-u.ac.jp, †kasu@cc.saga-u.ac.jp

【はじめに】 β -Ga₂O₃ は、禁制帯幅 4.4 ~4.6 eV のワイドバンドギャップ半導体であり、パワー半導体として期待されている。最近我々は、 $(0\bar{1}0)$ 面上に作製した β -Ga₂O₃ ショットキーバリアダイオード(SBD)のリーク電流値と SBD 領域の転位欠陥密度に強い相関があることを報告したが[1]、今回、我々は(001)面上に作製した SBD の特性と欠陥との関係について調べたので報告する。

【実験】試料は、EFG 法で[010]方向に引き上げた β - Ga_2O_3 単結晶を(001)面で切り出した板状の基板単結晶である。裏面全面に Ti/Au、表面に Ni/Au 電極(直径 $350~\mu m$)をピクセル状に蒸着して 434 個の縦型 SBD を作製し、電気特性を評価した。次に、熱リン酸でエッチングし、表面に現れたエッチピットを微分干渉顕微鏡(DIC)および走査型電子顕微鏡(SEM)で観察して欠陥分布を調べた。

【結果と考察】エッチング後の SBD 領域の DIC 像を Fig. 1 に示す。[010]方向に伸びた 2 本の線状のエッチパターンが確認できる。これは,我々が以前報告した空洞型欠陥に相当すると思われる[1]. Fig. 2 に I_{RLeak} と素子領域内のエッチピットの合計の長さの相関関係を示す。その結果,相関関数は r=0.15 となり両者にはほとんど相関が見られなかった。これは(001)面において空洞型欠陥が,基板面と平行の[010]方向に伸びており,(001)基板結晶を貫通しないためだと思われる。

【参考文献】[1] M.Kasu et al., Jpn. J. Appl. Phys. 55, 1202BB (2016).

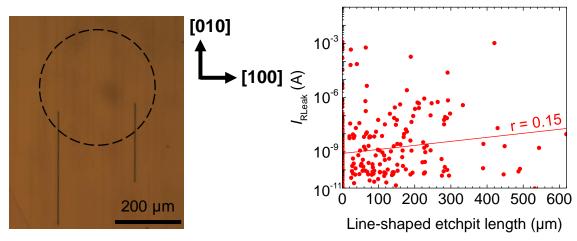


Fig. 1 Optical microscopy image at SBD (area circled by dashed line).

Fig. 2 *I*_{RLeak} of SBDs as functions of line-shaped etchpit length.