Spin-charge conversion in Bi_{1-x}Sb_x layer Kyoto Univ.¹, ^OYuichiro Ando¹, Ryouhei Kumamoto¹, Sergey Dushenko¹, Teruya Shinjo¹, and Masashi Shiraishi¹

E-mail: ando@kuee.kyoto-u.ac.jp

Spin-charge conversion in nonmagnetic materials by means of the inverse spin Hall effect (ISHE) or the inverse Rashba-Edelstein effect (IREE) is the central topics in the recent spintronics studies[1,2], because it enables highly efficient spin-charge conversion without utilization of ferromagnetic materials. Since a large spin-orbit coupling generally enables highly efficient spin-charge conversion, bismuth (Bi) is a pivotal material in the spin-charge conversion studies[3,4]. Actually, a large IREE was realized in Bi / Ag interfaces[5]. Bi₂Se₃ based topological insulators also exhibited highly efficient spin-charge interconversion. Here, we focus on Bi_{1-x}Sb_x alloys. Bi_{1-x}Sb_x alloys exhibit a wide variety of characteristics. For example, whereas pure Bi (x=0) is a semimetal material with a Dirac fermion, Bi_{1-x}Sb_x alloys with x=0.07-0.22 are three dimensional topological insulators. Interestingly, semimetal Bi_{1-x}Sb_x alloys (x=0.07) and topological insulator Bi_{1-x}Sb_x alloys (x=0.07-0.22) have the same crystal structure, which enables a systematical investigation of spin-charge conversion properties without change in the crystal structure.

In this study, we investigated spin-charge conversion efficiency in $Bi_{1-x}Sb_x$ alloys by using spin pumping. A schematic illustration of the sample is shown in Fig. 1. $Bi_{1-x}Sb_x$ was deposited on top of a

ferrimagnetic insulator, yttrium iron garnet (Y₃Fe₅O₁₂, YIG) epitaxial layer by using thermal evaporation. Spin current was injected into the Bi_{1-x}Sb_x layer from the YIG layer under the ferrimagnetic resonance (FMR) conditions. The injected spin current was converted into an in-plane charge current due to the ISHE or IREE. A typical result of the converted charge current in the Bi_{1-x}Sb_x layer as a function of the external magnetic field measured at room temperature, where Sb concentration was x=0.10 is shown in Fig. 2. A clear converted charge current showed a cosine dependence, indicating successful spin injection into the Bi_{1-x}Sb_x layer. In the presentation, we will discuss Sb concentration dependence of efficiency of the spin-charge conversion.

References :

- [1] E. Saitoh et al., Appl. Phys. Lett. 88, 182509 (2006).
- [2] P. R. Hammar et al., Phys. Rev. Lett. 83, 203(1999).
- [3] Y. Fuseya et al., J. Phys. Soc. Jpn. 83, 074702 (2014).
- [4] H. Emoto et al., Phys. Rev. B 93, 174428 (2016).
- [5] J. C. Rojas Sánchez et al., Nat. Comm. 4, 2944 (2013).

Fig. 1 A schematic of $Bi_{1-x}Sb_x/YIG$ device for spin pumping measurements.

Fig. 2 A typical result of converted charge current as a function of external magnetic field.