Gd_x-Fe_{1-x}合金を用いた磁性細線の磁気特性と電流誘起磁壁移動 Magnetic properties and current induced domain wall movement of magnetic thin wires using Gd_x-Fe_{1-x} alloy

東海大工¹, NHK 技研², 長岡技科大工³ °(M1)海老澤 遼¹, 青島 賢一²,
(M2)高木 泰輝¹, 金城 秀和², 麻生 慎太郎², 加藤 大典², 船橋 信彦², 久我 淳²,
秋山 泰伸¹, 石橋 隆幸³, 町田 賢司²

Tokai University.¹, NHK STRL.², Nagaoka University of Technology.³ [°]Ryo Ebisawa¹, Kenichi Aoshima², Taiki Takagi¹, Hidekazu Kinjyo², Shintaro Aso², Daisuke Kato², Nobuhiko Funabashi², Kiyoshi Kuga², Yasunobu Akiyama¹, Takayuki Ishibashi³, Kenji Machida² E-mail: starfox0583@gmail.com

広視域のホログラム表示用ディスプレイとして、磁気光学(MO)SLM の研究を行っている¹⁾。こ れまでにパッシブ駆動¹⁾、素子選択トランジスタを用いたアクティブ駆動の MOSLM を開発して きた²⁾。広視域のホログラフィーの生成にはトランジスタを高集積し、1μm 程度の画素ピッチを 有した MOSLM が必要である。しかし、高集積した場合、そのトランジスタサイズが小さくなり、

Fig.1 Kerr loop of Gd_x-Fe_{1-x} magnetic wire

Fig. 2 Domain wall displacement

注入できる電流値が限られてくるために、磁化反転に要する 駆動電流の低減が重要である。近年、アモルファス希土類-遷移金属(RE-TM)合金を用いた磁性細線において、低電流で 磁壁移動による磁化反転が報告されている³⁾。今回磁壁移動 による磁化反転を用いた光変調素子を目指し、Gd_x-Fe_{1-x}を用 いた磁性細線の特性を調査した。

今回作製した磁壁移動素子はGd_x-Fe_{1-x}磁性細線(幅:500nm、 厚:15nm、x=20.4, 24.4)、電極、初期磁区形成用ハード膜から なる構成とした。ハード膜はサブミクロンサイズに加工し、 細線下に埋め込む構造とした。素子作製にはスパッタによる 製膜、電子線描画、イオンミリング、リフトオフを用いて作 製した。

マイクロ Kerr 測定装置(λ:658nm)を用いて磁性細線の磁化 反転特性を評価した。初期化磁界として素子に対して面直方 向に+8kOe を印加し、その後磁化特性を測定した。Fig.1か らどちらのヒステリシスループもプラス磁界の反転磁界は 大きく、マイナス磁界の反転磁界は小さいという非対称なル ープであった。これはプラス磁界での反転は一斉磁化反転、 マイナス磁界での反転は、磁壁移動による磁化反転だと考え られる。マイナス磁界の時ハード膜からの漏れ磁界によりハ ード膜の両端の位置にハード膜とは逆向き(マイナス)の磁

区が現れるからである。Gd_{24.4}Fe_{75.6}は-70Oe, Gd_{20.4}Fe_{79.6}は-30Oe で磁壁移動による磁化反転(デピン ニング磁界)した。Gd_{24.4}Fe_{75.6}の方が一斉磁化反転では約 6.6 倍大きくデピンニング磁界は約 2.3 倍 大きかった。一斉磁化反転では Gd_{24.4}Fe_{75.6}だと補償組成に近いために、反転磁界が大きく変化し、 デピンニング磁界では一斉磁化反転ほど差がなかった。この結果からデピンニング磁界は組成の 影響が少ないと考えられる。また、Fig. 2 に電流誘起磁壁移動特性を示し、以下のように測定した。 外部磁界 8kOe を印加しハード膜と磁性細線の磁化方向を上向きに揃え、磁界をゼロとして初期 化、毎初期化後、パルス幅 0.5µs の電流を注入した。その後、MO 顕微鏡で磁壁の移動を観察し磁 壁の移動距離を 10 回測定した。どちらの組成でも磁壁の動き出しが 1.4mA で、移動距離にあま り差がなかった。これは、デピンニング磁界の差が 40Oe と、あまり差がなかったためだと考えら れる。また、500nm 幅の細線で 1.4mA における電流密度は 1.8×10⁷A/cm²に相当し、これまでに報 告されている Co/Pd などを用いた細線(6.2×10^7 (A/cm²)⁴⁾よりは低電流ではあったが、Tb-Fe-Co 合金を用いた細線ほどの低電流化を実現することは出来なかった。

1) K. Aoshima et al., "J. Display Technol., vol. 11, no. 2, pp. 129–135, 2014. 2) K. Aoshima, et al, J. Display Technol., 12, pp. 1212-1217, 2016

3) H.Awano, J. Magnetism and Magnetic Materials 383 (2015) 4) Pin.Ho : "Oersted Field and Spin Current Effects on Magnetic Domains in [Co/Pd]₁₅ Nanowires", IEEE TRANSACTIONS ON MAGNETICS, Vol. 52, No. 6 (2016)