## Fabrication of high current density organic thin-film diode with rare-earth electrode 阪大基礎工<sup>1</sup>,阪大院基礎工<sup>2</sup>,阪大 CSRN<sup>3</sup>

<sup>0</sup>下瀨弘輝<sup>1</sup>,河辺健志<sup>1</sup>,縄岡孝平<sup>2</sup>,後藤穣<sup>1,2,3</sup>,鈴木義茂<sup>1,2,3</sup>,三輪真嗣<sup>1,2,3</sup>

Osaka Univ.<sup>1</sup>, CSRN<sup>2</sup>

<sup>o</sup>K. Shimose<sup>1</sup>, T. Kawabe<sup>1</sup>, K. Nawaoka<sup>1</sup>, M. Goto<sup>1, 2</sup>, Y. Suzuki<sup>1, 2</sup> and S. Miwa<sup>1, 2</sup>

E-mail: shimose@spin.mp.es.osaka-u.ac.jp

Magnetoresistance in organic thinfilm-diode has been studied since it is related to interactions between radical spin-pair such as local hyperfine interaction [1]. In previous research, current density in such a device was at most  $10^{3}$ A/m<sup>2</sup> and impact of an external current/voltage on such interactions has not been mentioned [1]. In this research, we tried to realize high-current density organic diode. Firstly, a small work function material (3.2 eV), Nd, was employed as an electron injection electrode. Secondly, microfabrication was conducted to realize a relatively small junction size to reduce pinholes.

The multilayer structure is depicted in Fig. 1(a): MgO(001) substrate/Cr(50 nm)/Au(2 nm)/ phthalocyanine(H<sub>2</sub>Pc, 10 nm)/ tris(8-hydroxyquinolinato)aluminium(Alq<sub>3</sub>, 15 nm)/Nd(10 nm)/Au(20 nm). The Cr was post-annealed at 350°C for 30 minutes. All films were deposited at room temperature by electron beam deposition or resistance heating methods. Photolithography and Ar-ion etching were employed for microfabrication. The designed junction area was  $5 \times 10 \ \mu\text{m}^2$ . Figure 1(b) shows a typical current-voltage characteristics. A high current density (~10<sup>5</sup> A/m<sup>2</sup>) was realized. We tested following fittings, namely, spacecharge-limit (=SCLC,  $I \propto V^m$ ), tunneling injection limit (=Fowler-Nordheim,  $I \propto V^2 \exp(-\alpha/V)$ ) and Schottky injection limit ( $I \propto \exp(\alpha V)$ ), where *I*, *V* are current and voltage, respectively [2]. The red solid line is the best fit using the SCLC. Since the fit coefficient was *m*=5.8, which is deviated from both SCLC with trap free region (*m*=2) and Ohm's law (*m*=1), we assumed that the *I-V* characteristics can be SCLC with trap charge controlled region. Multilayer structure dependence of current-voltage characteristics and magnetoresistance will be reported. This work was supported by JSPS KAKENHI. (Nos. JP15H05420J, P26103002)



[1] P. Janssen et al., Nat. Commun. 4, 2286 (2013). [2] Device physics of organic semiconductors, 講談社.