Magnetic moments of Co-phthalocyanine grown on Fe(001)

T. Kawabe1, K. Shimose1, T. Tsukahara1, K. Nawaoka1, M. Goto1,2, Y. Kotani2, T. Nakamura2, Y. Suzuki1,2, and S. Miwa1,3
E-mail: kawabe@spin.mp.es.osaka-u.ac.jp

Magnetic ions in phthalocyanine molecules may show unique orbital magnetism because of its unquenched orbital angular momentum [1]. We have reported phthalocyanine molecules can epitaxially grow on metals with bcc crystal structure on MgO (001) substrate [2]. In this presentation, we report a characterization of magnetic moments of Co in Co-phthalocyanine (CoPc) on bcc-Fe (001) by x-ray absorption spectroscopy (XAS).

Figure 1 shows multilayer structure. The multilayer consist of MgO (001) substrate/MgO(5 nm)/V(30 nm)/Fe(0.5 nm)/Co phtharocyanine(0-0.85 nm)/MgO(2 nm), and it was fabricated by molecular beam epitaxy. All layers were deposited at room temperature. The V layer was post-annealed at 500 °C for 30 minutes. XAS and its x-ray magnetic circular dichroism (XMCD) were conducted at soft x-ray beamline, BL25SU, at SPring-8. Figure 2 shows XAS/XMCD spectra of 0.35-nm-Co-phthalocyanine. One monolayer thickness of the Co-phthalocyanine almost corresponds to 0.35 nm. The measurements were performed under perpendicular magnetic field of 1.9 T, where magnetization of the Fe saturated. From Fig. 2, negative XMCD at Co-L2 edge (~778 eV) shows ferromagnetic coupling between magnetic moments of Fe and Co. In addition, XMCD intensity at Co-L3 edge is much larger than that of Co-L2 edge (~793 eV), indicating large unquenched orbital magnetic moment. In the presentation, magnetization direction and phthalocyanine thickness dependence of the magnetic moments will be discussed.

This work was supported by JSPS KAKENHI (Nos. JP15H05420J, P26103002) and ImPACT program.