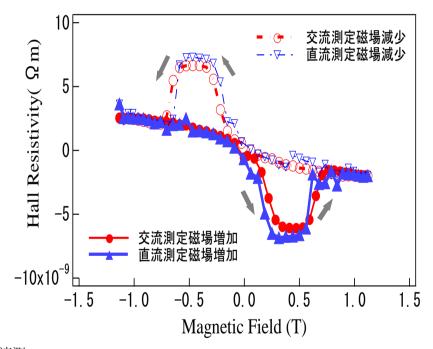
## 強磁性体 TbFeCo を電極に用いた両極性伝導体 ScH<sub>2</sub>の 直流ホール効果測定

Hall effect measurement of bipolar conductor ScH<sub>2</sub>


using TbFeCo electrodes

埼大院理工<sup>1</sup>, 阪大産研<sup>2</sup>, 豊田工大<sup>3</sup>, <sup>O</sup>佐藤枢<sup>1</sup>, 西間木 誠<sup>1</sup>, 飯笹 圭太郎<sup>1</sup>, 酒井 政道<sup>1</sup>, 樋口 宏二<sup>2</sup>, 北島 彰<sup>2</sup>, 大島 明博<sup>2</sup>, 長谷川 繁彦<sup>2</sup>, 黒川 雄一郎<sup>3</sup>, 粟野 博之<sup>3</sup> Saitama Univ. <sup>1</sup>, Osaka Univ. <sup>2</sup>, Toyota Institute Tech. <sup>3</sup>, <sup>O</sup>K.Sato<sup>1</sup>, M. Nishimagi<sup>1</sup>, K. Izasa<sup>1</sup>, M.Sakai<sup>1</sup>, K. Higuchi<sup>2</sup>, A. Kitajima<sup>2</sup>, A. Oshima<sup>2</sup>, S. Hasegawa<sup>2</sup>, Y. Kurokawa<sup>3</sup>, H. Awano<sup>3</sup> E-mail: sakai@fms.saitama-u.ac.jp

**緒言** 我々は電極をフェリ磁性体 TbFeCo, チャネルを両極性伝導型金属  $ScH_2$  としたホール素子を用いてスピン注入の研究を行っている. なお, 微小ホール素子は便宜上, (電極)/(電流チャネル)と呼称する. 先行研究ではこの素子を用いて, 交流におけるホール抵抗及び横磁気抵抗測定を行った[1]. 本研究では, 先行研究と同じ素子を用いて, 同様の測定を直流で行い, 得られる値を比較調査した.

方法 測定試料は、 $TbFeCo/ScH_2$ を用いた.電極はスパッタ法、チャネルは EB 法により蒸着した.比抵抗の測定は van der van de

結果と考察 TbFeCo/ScH<sub>2</sub> の交流(480 Hz)及び直流でのホール抵抗の磁場依存性を Fig.1 に示す. 交流, 直流共にヒステリシスを持つホール効果が観測された. ホール係数の最大値と最小値の差は, 交流測定時で $1.4\times10^{-8}\,\Omega m$ , 直流測定時では $1.3\times10^{-8}\,\Omega m$  となり,グラフの概形もそれぞれ類似したものとなった.また, TbFeCo/ScH<sub>2</sub> は $\dot{-}$ 1Tの磁場下の交流での横磁気抵抗比は約 19%となった。



一方,直流では約 1.5%となり交流測 定時の横磁気抵抗比の1/13となった.以上より先行研究における,交流でのホール抵抗測定で観測されて

Fig.1 Hall resistivities of TbFeCo/ScH<sub>2</sub> measured with AC and DC methods.

いたヒステリシスを持つホール効果は、交流由来で発生する効果ではなく、TbFeCo 電極によるスピン注入効果による異常ホール効果と考えられる.

[1] 西間木ら:第 63 回応用物理学会春季学術講演会,19p-P1-35(2016).