積層メタル技術を用いた MEMS 慣性センサにおける粘性定数の検討

A Study on Damping Constant of MEMS Inertial Sensor by Multi-Layer Metal Technology NTT アドバンステクノロジ ¹、東工大 ²、東大 ³、JST-CREST⁴

O小西敏文 ¹,山根大輔 ^{2,4},佐布晃昭 ¹,曽根正人 ^{2,4},年吉洋 ^{3,4},益一哉 ^{2,4},町田克之 ^{1,2,4}

NTT Advanced Technology Corp. ¹,Tokyo Tech. ²,The Univ. of Tokyo ³,JST-CREST ⁴

OToshifumi Konishi ¹,Daisuke Yamane ^{2,4},Teruaki Safu ¹,

Masato Sone^{2, 4}, Hiroshi Toshiyoshi^{3, 4}, Kazuya Masu^{2, 4}, and Katsuyuki Machida^{1, 2, 4} E-mail: toshifumi.konishi@ntt-at.co.jp

【はじめに】我々は、積層メタル技術を用いた小型かつ低ノイズな静電容量型 MEMS 慣性センサの研究開発を行っている[1]。図 1 に示す MEMS センサの高性能化を実現するためには、機械ノイズ (ブラウニアンノイズ B_N 、 $B_N = \sqrt{4k_BTb}/9.8m$ [G/\sqrt{Hz}]、 k_B : ボルツマン定数 (1.38×10⁻²³ J/K)、T: 絶対温度、b: 粘性定数、m: 錘質量、1 G = 9.8 m/s^2)の設計パラメータを明確にする必要がある。今回、センサの構造パラメータと粘性定数の関係について検討を行ったので報告する。

【内容】本検討を実施するために、MEMS 慣性センサの構造パラメータとして、錘と下部電極間とのギャップ d_0 、錘の面積 S、およびエッチングホールサイズ L_E をそれぞれ変えたデバイスを作製した。各デバイスの周波数特性から粘性定数を求め、各パラメータと求めた粘性定数との関係をグラフ化した。

【結果】測定結果から、本検討で得た粘性定数は d_0 の逆数、および錘の面積 S とエッチングホール面積との比率 M に例することがわかった。本結果を踏まえて、センサの構造パラメータを用いた新たな粘性定数モデル式を提案した。提案式を用いて B_N を計算し、実測結果から得られた B_N と比較した。結果を図 2 に示す。本結果より、提案モデルを用いて粘性定数の構造パラメータ依存性を初めて明らかにし、積層メタル技術を用いた MEMS 慣性センサの高性能化に見通しを得た。参考文献: [1] D. Yamane et al., Proc. IEEE SENSORS 2015, Busan, South Korea, Nov. 1-4, 2015, pp. 513-515.

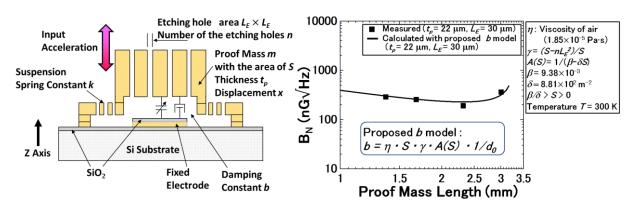


Fig. 1 Schematic image of a MEMS inertial sensor with mechanical parameters by multi-metal layer technology.

Fig. 2. Measured B_N of MEMS inertial sensors and the calculation results obtained by using our proposed damping constant model.