## In-situ CNT フォレスト成長に向けた金属酸化物担持層のミスト CVD 形成

Mist CVD formation of metal oxide support layer for in-situ CNT forest growth

<sup>O</sup>木下 聖也<sup>1</sup>, 苅田 基志<sup>2</sup>, 中野 貴之<sup>2</sup>, 井上 翼<sup>2</sup>, 三輪 鉄春<sup>3</sup>, 長岡 宏一<sup>3</sup>

(1. 静大創造院, 2. 静大院工, 3. JNC 石油化学)

<sup>O</sup>T. Kinoshita<sup>1</sup>, M. Karita<sup>2</sup>. T. Nakano<sup>2</sup>, Y. Inoue<sup>2</sup>, T. Miwa<sup>3</sup>, H. Nagaoka<sup>3</sup>

## (1.GSST, Shizuoka Univ., 2.Shizuoka Univ., 3.JNC Petrochemical)

## E-mail: kinoshtia@cnt.eng.shizuoka.ac.jp

【はじめに】本研究室ではカーボンナノチューブ(CNT)の生産性向上に向けた合成手法の基礎 技術として、基板上への CNT の核となる触媒粒子形成および CNT 成長の2ステップを装置内で 完結させる in-situ ミスト化学気相堆積(CVD)プロセスの構築を行ってきた。本発表では、CNT 合成プロセスのさらなる効率化と CNT 品質向上に向けて、CNT の成長状態に大きく影響する触 媒粒子担持層のミスト CVD を新たに加えたプロセスを構築したので報告する。

【実験】担持する金属酸化物として TiO<sub>2</sub>を堆積させた。前駆体にオルトチタン酸テトライソプロ ピルを使用した。それをエタノールと混合し、超純水および塩酸を数滴添加後、撹拌することで 原料溶液を作製した。超音波発生装置によって霧化した原料溶液をアルゴンガスによって CVD 装 置内へ供給した。チャンバー内の温度を 500℃、ミスト供給時間を 10 min とし、配置した SiO<sub>2</sub>/Si 基板上に TiO<sub>2</sub>膜を形成した。その後、チャンバー内を 700℃まで昇温し、フェロセン/エタノール 溶液をミスト供給した後、CNT の原料となるアセチレンを流入することによって、形成した担持 層上に CNT 成長を行った。

【結果】Fig. 1 に担持層形成前と形成後の基板表面のラマンスペクトル(波長 532 nm)を示す。 また、Fig. 2(a)に担持層のAFM像、(b)にへき開した基板断面のSEM像、(c)にCNT 成長後の基板 表面のSEM像を示す。Fig. 1 の膜形成後のラマンスペクトルには、140 cm<sup>-1</sup>付近にアナターゼ型 TiO<sub>2</sub>のピークが見られる。またFig. 2(a)および(b)から、SiO<sub>2</sub>/Si 基板上に膜厚 50 nm 程度のTiO<sub>2</sub> 粒子膜が形成されていることが分かる。Fig. 2(c)からTiO<sub>2</sub>上に配向成長した多層CNTが観察でき、 触媒粒子担持層形成、触媒粒子形成、CNT 成長を同CVD 装置内で完結するプロセスを構築でき た。当日は、様々な形成条件下における担持層の状態とそれらの層上に成長するCNT の状態につ いて発表する。



Fig. 2 (a)AFM image of TiO\_ film. (b)Cross-sectional SEM image of TiO\_ deposited on substrate. (c)CNTs grown on the TiO\_ layer.

Raman shift (cm<sup>-1</sup>)

170

200