Breakdown Voltage Instability in nLDMOS Transistors

Dept. of Electrical Engineering, National Cheng Kung Univ., 8 Jone F. Chen, Ya-Sheng Feng
E-mail: jfchen@mail.ncku.edu.tw

High-voltage lateral diffused metal-oxide-semiconductor (LDMOS) transistors are widely used in applications such as power management and LCD driver. Because LDMOS devices are operated under high voltages, the drain breakdown voltage (V_{bd}) is a key device parameter. V_{bd} increase has been observed after either repeated V_{bd} measurements [1] or hot-carrier stress [2], leading to V_{bd} instability. There is few experimental verification concerning the root cause of V_{bd} increase. In this work, we investigate the mechanism of hot-carrier induced V_{bd} increase in nLDMOS transistors by charge pumping measurements [3] and TCAD simulations.

Fig. 1 shows the structure of the n-type LDMOS transistor, which is fabricated with a CMOS compatible process, used in this work. The channel (ch), n accumulation (acc), and n drift regions below STI (bs) is also drawn in Fig. 1. V_{bd} is the drain voltage (V_d) when the drain current (I_d) reaches 1 nA with the source, gate, and bulk terminals grounded. To study hot-carrier induced V_{bd} instability, device was stressed at $V_d = 1.1V_{dd}$, where V_{dd} is operating voltage. The gate voltage (V_g) at stress is the V_g that produces the peak bulk current. The stress test was lasted for 3000 s and measured the shift of device parameters and charge pumping current (I_{CP}) periodically. In I_{CP} measurement, a pulse of 3 V in height at 500 kHz was applied to the gate with the base voltage (V_{base}) sweeping from -4 to 0 V.

Fig. 2 shows hot-carrier induced V_{bd} increase, where V_{bd} of fresh device is 47 V but it increases to 57 V after 3000 s stress even though the stress induced linear-region I_d (I_{lin}) is degraded only 2.4% as in inset. To investigate the mechanism of this V_{bd} increase, I_{CP} of the fresh and aged device during stress were measured as in inset of Fig. 3. From I_{CP} data, hot-carrier induced interface stages (ΔN_{IT}) in channel and accumulation regions can be extracted by $\Delta N_{IT} = \Delta I_{CP} / (qFWL_{CP})$, where ΔI_{CP} and L_{CP} are the increase in I_{CP}, and the length of region where N_{IT} is probed [3]. The extracted ΔN_{IT} is shown in Fig. 3, where ΔN_{IT} in the accumulation region is much greater than the ΔN_{IT} in the channel region. This suggests that ΔN_{IT} in accumulation region is very likely the root cause of V_{bd} increase.

To verify the impact of ΔN_{IT} location on V_{bd}, TCAD simulations of V_{bd} were performed for the following cases: a device without ΔN_{IT}, a device with a fixed amount of ΔN_{IT} in the channel region, accumulation region, and drift region below STI. Fig. 4 shows that device without ΔN_{IT}, device with ΔN_{IT} in the channel region or drift region below STI all has $V_{bd} \sim 47$ V. The device with ΔN_{IT} in accumulation region has $V_{bd} \sim 58$ V. The inset of Fig. 4 compares the impact ionization generation for a device without ΔN_{IT} and a device with ΔN_{IT} assigned in the accumulation region at $V_d = 47$ V. ΔN_{IT} in accumulation region significantly reduces the impact ionization generation as seen in inset (b) of Fig. 4, leading to V_{bd} increase. From the above analyses, it is verified that hot-carrier induced N_{IT} generated in the accumulation region is responsible for V_{bd} instability in our nLDMOS transistors.

Fig. 4 V_{bd} of ΔN_{IT} in different locations. Inset is impact ionization without/with ΔN_{IT} in acc region.