シリカガラス中の OH 基拡散係数の OH 基濃度依存性

Dependence of diffusion coefficient on OH groups concentration in silica glass

福井大院工¹, 東ソー・エスジーエム² O(M2)佐藤 直哉¹, 荒川 優¹, 葛生 伸¹, 堀越 秀春², 榊原 宏樹¹

Univ. Fukui ¹, Tosoh SGM. ², ONaoya Sato¹, Yu Arakawa¹, Nobu Kuzuu¹,

Hideharu Horikoshi² and Hiroki Sakakibara¹

E-mail: kuzuu@u-fukui.ac.jp

【はじめに】表面を平坦に研磨したシリカガラスを接触し,荷重をかけて熱処理すると接合する。これまで接合界面間の OH 基の拡散状態を調べるために,OH 基濃度の異なるシリカガラスを接合したものを熱処理したときの OH 基の拡散を調べ, \equiv Si-O-Si \equiv + H_2O \rightleftarrows \equiv Si-OH HO-Si \equiv の反応によって拡散する場合の理論式($D_{\text{OH}}=(4D_{\text{H,0}}/K)[\equiv$ Si-OH]; $D_{\text{H,0}}$ は H_2O の拡散係数、K は平衡定数、[\equiv Si-OH]は OH 基の数量濃度)の通り 1 ,OH 基の拡散係数は OH 基濃度に比例することを示した 2 。前報では拡散係数のOH 濃度に対する比例係数が 1150° C で不連続になることが示唆された。この現象を確認するために測定温度,加熱時間を増やすことによってより精密な測定を行った。

【実験方法】直接法シリカガラス($[OH] \approx 1200$ wt. ppm),およびスート法シリカガラス($[OH] \approx 130$ wt. ppm)を接合した。その後,熱処理時間・温度を変えて大気中で熱処理をしたのち,試料片を切り出し顕微赤外分光光度計で OH 基濃度分布を測定した。ボルツマン-侯野の方法 $^{3)}$ を用いて各温度での OH 基の拡散係数を求めた。

【実験結果】得られた拡散係数 D_{OH} は図 1 に示すように OH 基濃度に比例している。拡散係数の OH 基濃度に対する比例係数のアレニウスプロットを図 2 に示す。前報 $^{2)}$ では 1150° C での急増が

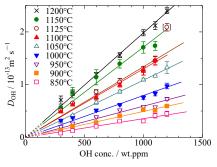


Fig. 1. OH conc. dependence of the OH-diffusion coefficient.

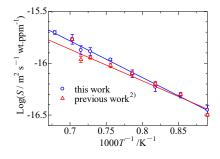


Fig. 2. An Arrhenius plot of the linear proportionality factor of Figure 1.

見られたが、各温度での測定時間の追加,1200°C での測定データを追加した結果、比例係数がアレニウスプロットで直線になった。実験結果から $D_{\rm OH}$ は絶対温度 T、[\equiv Si \longrightarrow OH]を用いて $D_{\rm OH}$ = (4.9 \pm 1.0×10⁻¹⁴ m²s⁻¹wt.ppm⁻¹) exp(-8.1 \pm 0.3×10³ K /T)[\equiv Si \longrightarrow OH]となった。

参考文献

- 1) R. H Doremus, in Reactivity of Solids, Ed. J. W. Mitchell, R. C. Devies, R. W. Roberts and P. Cannon (Wiley, New York, 1969) p. 667.
- 2) 佐藤 直哉、荒川 優、葛生 伸、堀越 秀春、榊原 宏樹:2016 年 第77 回応用物理学会秋季 学術講演会予稿集 (16p-A25-6)
- 3) C. Matano, Japanese Journal of Physics, 8, 109 (1933)