Cat-CVD SiNx 膜による微細テクスチャー結晶 Si 表面のパッシベーション

Passivation of crystalline Si surfaces with small textures by Cat-CVD SiN_x films 北陸先端大¹、攝津製油² O劉 静¹,赤木 成明²,山本 裕三²,大平 圭介¹

JAIST¹, Settsu Oil Mill, Inc.², °Jing Liu¹, Seimei Akagi², Yuzo Yamamoto², Keisuke Ohdaira¹ E-mail: s1610209@jaist.ac.jp

はじめに

結晶 Si(c-Si)太陽電池の高性能化には、窒化 $Si(SiN_x)$ 膜での c-Si 表面の有効なパッシベーションが不可欠である。これまで我々は、触媒化学気相堆積(Cat-CVD)法で堆積した SiN_x 膜の c-Si 表面の優れたパッシベーション性能を実証している[1,2]。今回、アルカリ溶液で形成したサイズ 1-2 μ m の微小テクスチャーc-Si 表面への、Cat-CVD SiN_x 膜の適用を検討したので報告する。

実験方法

バルク少数キャリア寿命>10 ms の n 型 (100)c-Si を基板として用いた。オゾン水で 5 分間超音波洗浄した後、KOH をベースとしたアルカリ溶液に Si 基板を 90 °C、15 分間浸漬し、再びオゾン水で 5 分間超音波洗浄した後RCA 洗浄を行った。アルカリ溶液処理後の c-Si 表面の SEM 像を Fig. 1 に示す。その後、Table 1 に示す条件で、c-Si 両面に膜厚~100 nm、屈折率~2.0 の SiNx 膜を Cat-CVD で堆積した。試料取り出し後、窒素雰囲気下、350 °C で 30 分間アニールを行った。参照用試料として、鏡面 c-Si 上にも同様の SiNx 膜堆積、ポストアニー

Table 1 Deposition conditions of SiN_x films.

SiH ₄	NH ₃	Pressure	T_s	Tcat	Time
(sccm)	(sccm)	(Pa)	(°C)	(°C)	(s)
8	150	10	100	1800	184

ルを行った。 μ -PCD 法で c-Si の実効少数キャリア寿命(τ_{eff})を測定することで、 SiN_x 膜のパッシベーション能力を評価した。

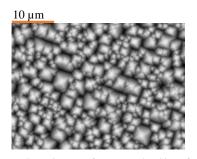


Fig. 1 SEM image of a textured c-Si surface.

結果

Table 2 に、 SiN_x 膜でパッシベーションを行った平坦およびテクスチャーc-Si 基板の τ_{eff} を示す。ポストアニール後のテクスチャーc-Si 基板は 1.5 ms を超える τ_{eff} を示しており、微細テクスチャー上においても、良好なパッシベーション性能が得られることを確認した。

Table 2 $~\tau_{\text{eff}}$ of c-Si wafers passivated with Cat-CVD SiN $_{x}$

	Before annealing	Annealed
Flat	0.30 ms	2.54 ms
Texture	0.16 ms	1.57 ms

参考文献

- [1] Trinh Thi Cham *et al.*, Jpn. J. Appl. Phys. 53, 022301 (2014).
- [2] Trinh Thi Cham et al., WCPEC-6, p. 613 (2014)