霧化塗布法(CMD)による PEDOT:PSS 製膜と結晶 Si 系太陽電池性能

Chemical mist deposition of PEDOT:PSS and its application to c-Si/PEDOT:PSS solar cells

埼玉大理工研 1 、東洋大ナノバイオ 2 <u>黒木宇紀 1 </u>、竇佳楽 1 、石川龍馬 1 、J. Hossain 1 、A.T.M. Islam 1 、花尻達郎 2 、中島義賢 2 、藤井康彦 2 、徳田正秀 2 、石川良 1 、白井肇 1

Saitama U.¹, Toyo U.²,T. Kuroki¹, J. Dou¹, R. Ishikawa¹, J. Hossain¹, A.T.M. Islam¹, T. Hanajiri²,

Y. Fujii², M. Tokuda², M. Tokuda², R. Ishikawa¹, and H. Shirai¹

1. はじめに:これまで PEDOT:PSS の帯電ミストを利用した導電性高分子 PEDOT:PSS および無機系微粒子のテクスチャーSi 上への気相成長法を検討してきた。その結果 1) 負の帯電ミストが主な前駆体であること、2) 基板バイアス V_s 印加によりミストの微細化・高速化が可能、3) テクスチャーSi 上への導電性高分子 PEDOT:PSS の高密着性塗布が可能であることを報告してきた。今回は帯電ミストによる Si 終端化と太陽電池性能の関連について考察した。

2.実験: 3MHz のアトマイザー上に 5wt% EG 添加 PEDOT:PSS 溶液を設置し、 N_2 キャリアガス流量、基板温度(T_s)および膜厚を変数として帯電ミストを発生させ、窒素をキャリアガスとして平坦・テクスチャーSi(1-5 Ω ・cm)基板上に輸送した。この際 Si 基板直上 2cmの位置に設置したメッシュ電極と Si 基板間に直流バイアス V_s を印加してミストの微細化・基板流入速度を制御した。ミスト輸送は高速カメラ、膜の評価は顕微鏡観察により行った。また c-Si 終端化はキャリアライフタイム: τ_m 計測、太陽電池は PEDOT:PSS/c-Si、裏面 InGa の素子構造で、ソーラーシミュレータにより評価した。

3.結果と考察: 図 1 は T_s に対する表面形態の変化と Si 基板上の PEDOT:PSS 膜の被覆率とキャリアライフタイム: τ_m の基板温度依存性を示す。図 2 は T_s に対する太陽電池 I-V 特性示す。被覆率とキャリアライフタイムの対応関係が見られ、また変換効率 η は 5.1 から 8.9%に向上した。

4.結論: CMD 法による PEDOT:PSS による Si 終端化と太陽電池性能との関連を調査した。 溶媒離脱に伴う PEDOT:PSS の塗布形態が τ_m 、太陽電池性能に直結することが分かった。

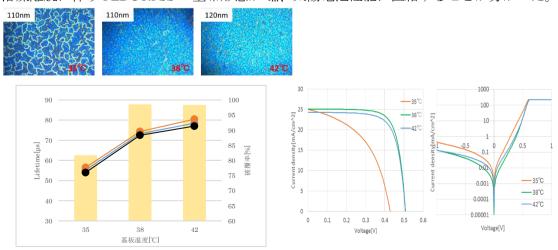


図1:T。に対する表面形態、τmと被覆率の関係

図2::Tsに対する太陽電池のI-V特性