Hg_{0.35}Cd_{0.65}Ga₂S₄の90°位相整合光パラメトリック発振

90° phase-matched optical parametric oscillator in Hg0.35Cd0.65Ga2S4

千歳科技大理工¹, マックスボルン研究所², 岡本光学加工所³

^O梅村 信弘¹, Valentin Petrov², 加藤 洌^{1,3}

Chitose Inst. of Sci. and Tech.¹, Max-Born Institute², Okamoto Optics Works, Inc.³

^oNobuhiro Umemura¹, Valentin Petrov², Kiyoshi Kato^{1,3}

E-mail: umemura@photon.chitose.ac.jp

HgGa₂S₄ と CdGa₂S₄の混晶である Hg_{1-x}Cd_xGa₂S₄結晶を用いた、光パラメトリック発振 (OPO)¹ 及び光パラメトリック増幅(OPA)²が報告されている。この結晶は、混晶比 x を変えることで、所 望の波長の中赤外光を Nd:YAG レーザ励起 90°位相整合 OPO により、直接発生させることが可 能である。今回、長さ 10 mm、カット角 θ = 90°, ϕ = 45°の Hg_{0.35}Cd_{0.65}Ga₂S₄結晶を用いて 1.0642 µm 発振の Nd:YAG レーザと Nd:YAG レーザ第3高調波励起によるβ-BaB₂O₄/OPO のアイドラー光 との光差周波発生 (DFG)の位相整合角を測定したところ、Fig. 1 に示すように 8.24~9.40 µm の 極めて広い波長範囲で、ほぼ 90°位相整合することを確認した。なお、Fig.1 の点線は、以下に示 す Hg_{0.35}Cd_{0.65}Ga₂S₄結晶のセルマイヤー方程式により得られた理論曲線である。

 $n_o^2 = 6.67542 + \frac{0.19124}{\lambda^2 - 0.05894} + \frac{372.26}{\lambda^2 - 374.11}, \qquad n_e^2 = 6.60315 + \frac{0.18386}{\lambda^2 - 0.05949} + \frac{378.76}{\lambda^2 - 376.06}, \qquad (1)$

$(0.6328 \le \lambda \le 10.5910),$

ここで、 λ は単位 μ m の波長である。次に、Fig. 2 に示すように 20℃から 37℃まで温度同調する ことにより 90° 位相整合 OPO も実現した。なお、Fig. 2 の点線は、上記(1)式に加え、筆者らが既 に報告した HgGa₂S₄及びCdGa₂S₄の屈折率温度分散式^{3,4}を元に計算した理論曲線である。さらに、 Hg_{1-x}Cd_xGa₂S₄結晶の SRO 共振器による Nd:YAG レーザ励起 OPO においては、Fig. 2 に示すよう に 2 つのアイドラー光を同時に観測した。位相整合特性などの詳細については当日報告を行う。

 90° phase-matching curves for type-1 DFG between a Nd:YAG laser and a Nd:YAG laser-pumped BBO/OPO in Hg_{0.35}Cd_{0.65}Ga_2S_4. The solid lines are the spectral bandwidths at FWHM observed for OPO. $^{\circ}$: experimental points.

- 1. V. V. Badikov et al., Quantum Electron., 35, 853 (2005).
- 2. V. Petrov, et al., Opt. Commun. 235, 219 (2004).
- 3. K. Kato, V. Petrov, and N. Umemura, Appl. Opt. 55, 3145 (2016).
- 4. K. Kato, N. Umemura, and V. Petrov, Opt. Commun., 386, 49 (2017).

Fig. 2.