反応性マグネトロンスパッタ法を用いた単相 MgH2 薄膜のエピタキシャル成長

Epitaxial growth of single-phase magnesium dihydride using reactive magnetron sputtering 東工大物質理工 ¹, 東北大 AIMR², 東北大金研 ³, JST-CREST⁴

^o(B)柿木園拓矢 ¹,清水亮太 ¹,杉山一生 ¹,大口裕之 ²,折茂慎一 ^{2,3},一杉太郎 ^{1,2,4} Tokyo Tech ¹, Tohoku Univ. ^{2,3}, JST-CREST ⁴

^oT. Kakinokizono¹, R. Shimizu¹, I. Sugiyama¹, H. Oguchi², S. Orimo^{2,3}, and T. Hitosugi^{1,2,4} E-mail: kakinokizono.t.aa@m.titech.ac.jp

[序]: 金属水素化物は水素貯蔵・イオン伝導等のエネルギーデバイス応用の観点で研究されてきたが、硫化水素における高温超伝導の報告以降[1]、エレクトロニクス応用への関心も高まっている[2]。水素化マグネシウム(MgH_2 , ルチル型, a=b=4.517 Å, c=3.021 Å)はバンド絶縁体であるが、Li や Al のキャリアドーピングによる金属-絶縁体転移が理論的に予想されるなど[3]、興味深い物性の発現が期待されている。しかしながら、これまで MgH_2 の単結晶薄膜を直接合成したという報告はないため、 MgH_2 の実験的な物性研究は進んでいない。そこで本研究では、反応性マグネトロンスパッタ法を用いた単相 MgH_2 薄膜のエピタキシャル成長を試みた。

[実験]: MgH_2 薄膜は反応性 RF マグネトロンスパッタ法を用いて作製した。 MgH_2 と同じルチル型である -10° (膜厚: ~100 nm)。 基板温度(T_s)は室温と 398 K、水素分圧(P_{H2})を 0.25 から 1.0 Pa まで変化させた。なお、成膜時のアルゴン分圧は 1.0 Pa に固定した。成膜後、薄膜の結晶性は X 線回折(XRD)を用いて評価した。

[結果]: $P_{H2} = 0.5 \text{ Pa}$, $T_s =$ 室温にて成膜した薄膜の 2 次元 XRD パターン(Fig.1)から、単相の MgH_2 薄膜が (110)配向して成長していることを確認した。また、 逆格子マップ測定(Fig.2)から、 MgH_2 200 ピークが TiO_2 200 ピークと同一の方位に観察され、 MgH_2 がエピタキシャル成長していることがわかった。続いて、 $P_{H2} = 0.5 \text{ Pa}$ における基板温度依存性を調べたところ、 $T_s = 398 \text{ K}$ では金属 Mg に由来する不純物ピークが観測された。以上から、単相の MgH_2 エピタキシャル薄膜の合成が可能であると示されたので、今後の物性研究への発展が期待される。

参考文献

- [1]: Drozdov et al., Nature 525, 73 (2015).
- [2]: H. Oguchi et al., Appl. Phys. Lett. 105, 211601 (2014)
- [3]: Karazhanov et al., Philos. Mag. 88, 2461 (2008)

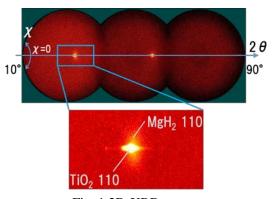


Fig. 1 2D-XRD pattern ($P_{\rm H2}$: 0.5 Pa, $T_{\rm s}$: room temperature)

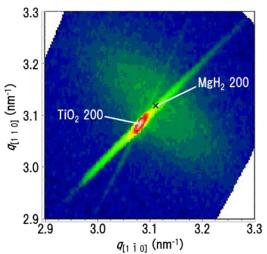


Fig. 2 Reciprocal space mapping (P_{H2} : 0.5 Pa, T_s : room temperature)