Fabrication of Au-nanoparticle-embedded lipid bilayers on solid substrates

Yokohama National University 1, Tokyo University of Technology 2, Tohoku University 3
Naotoshi Sakaguchi 1, Yasuo Kimura 2, Ayumi Hirano-Iwata 3, Toshio Ogino 1,
E-mail: ogino-toshio-rx@ynu.ac.jp

Supported lipid membranes are expected to be new platforms for novel two-dimensional devices operated in aqueous environment because they exhibit unique performance both as electrically insulating films and as substrates for biomolecules and metal-nanoparticle arrays [1,2]. Graphene is a single layer of carbon atoms with high conductivity and expected to be high-performance two-dimensional electrodes in nanodevices. Figure 1 shows one of the ideal structures for nanodevices that consists of molecular sheets as a fluidic substrate, graphene sheets as electrodes, and two-dimensional metal-nanoparticle sheets.

Au-nanoparticles (Au-NPs) were incorporated into lipid vesicles by hydrophobization of the Au-NP surfaces. Au-NP-embedded lipid bilayers supported on solid surfaces were fabricated by the vesicle-vesicle fusion, in which the Au-NP-embedded vesicles are adsorbed to the substrate, ruptured and fused, or by the vesicle-membrane fusion, in which the Au-NP-embedded vesicles are fused into preformed Au-NP-free supported lipid bilayers. The Au-NP incorporation was observed by atomic force microscopy (AFM) and transmission electron microscopy. Figure 2 shows an AFM image of lipid bilayer islands formed by the vesicle-vesicle fusion, where the Au-NPs are incorporated into the islands observed in the lower area. The Au-NPs form two-dimensional particle sheets with a uniform particle density in lipid bilayers.

Au-NP-embedded lipid bilayers can be fabricated also by the vesicle-membrane fusion illustrated in Figure 3. We found that vesicle approach control by addition of charged lipids and destabilization of the lipid bilayers by addition of lipids with a small polar head group are key techniques in this method.

This work was partly supported by CREST-JST and Grant-in-Aid for Sci. Res. (15K13361) from MEXT.