トレンチ MOS 構造を設けた Ga₂O₃ ショットキーバリアダイオード

Ga₂O₃ Schottky Barrier Diode with Trench MOS Structure

ノベルクリスタルテクノロジー1, タムラ製作所2, 情通機構3

[○]佐々木 公平^{1,2}, 脇本 大樹^{1,2}, ティユ クァン トゥ¹, 小石川 結樹^{1,2}, 倉又 朗人^{1,2}, 東脇 正高³, 山腰 茂伸^{1,2}

Novel Crystal Tech.¹, Tamura Corp.², NICT³

*Kohei Sasaki^{1, 2}, Daiki Wakimoto^{1, 2}, Quang Tu Thieu¹, Yuki Koishikawa^{1, 2},

Akito Kuramata^{1, 2}, Masataka Higashiwaki³ and Shigenobu Yamakoshi^{1, 2}

E-mail: sasaki@novelcrystal.co.jp

 β - Ga_2O_3 は、材料物性および量産性の点から、次世代の低損失高耐圧パワーデバイス用材料として魅力的である。これまでに Ga_2O_3 SBD の試作を行い、熱電子電界放出(TFE)理論で予測される限界特性に迫る性能を実証した[\dagger]。 TFE によるリーク電流を下げるためには、p 型埋め込み構造やトレンチ MOS 構造等をアノード電極直下に形成し、ショットキー接合部の電界強度を低減する手法が有効である。今回、トレンチ MOS 構造を設けた Ga_2O_3 SBD を試作したのでその特性について報告する。

図 1 に試作したデバイスの構造断面模式図を示す。Sn ドープ(001)基板上に、HVPE 法で Si ドープ Ga_2O_3 膜を成長させた。基板およびエピ膜のドナー濃度と厚さはそれぞれ 4×10^{18} cm⁻³、500 μ m と 5×10^{16} cm⁻³、8 μ m である。エピ膜の表面に、ドライエッチングによりメサ(幅 1 μ m)とトレンチ(幅 5 μ m、深さ 2 μ m)の周期構造を形成した。トレンチ側面及び底面には厚さ 50 nm の HfO_2 膜を設けた。アノード電極として、直径 400 μ m の Cu/Au を形成した。カソード電極には Ti/Au を用いた。比較のために、同じエピ基板上にトレンチ構造を設けていない通常の SBD も作製した。

図 2(a)に順方向電流密度-電圧(J-V)特性を示す。トレンチ SBD の方が通常の SBD よりもオン抵抗が高いのは、トレンチの導入により電流経路が減少したためである。図 2(b)に逆方向特性を示す。通常の SBD のリーク特性が TFE 理論にほぼ従うのに対して、トレンチ SBD は通常の SBD より数桁低いリーク特性を示している。 Ga_2O_3 SBD においても、トレンチ MOS 構造を導入することによって、逆方向リーク電流の抑制が可能なことを実証できた。

本研究の一部は、総合科学技術・イノベーション会議の SIP(戦略的イノベーション創造プログラム)「次世代パワーエレクトロニクス」(管理法人: NEDO)と文部科学省ナノテクノロジープラットフォーム事業 (NIMS 微細加工プラットフォーム、東京工業大学、早稲田大学)の支援を受けて実施した。

[†]佐々木他、2015年 第76回応物秋期学術講演会16p-4C-8。

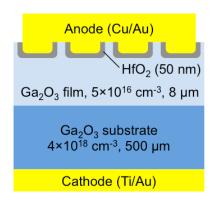


Fig. 1 Schematic illustration of Ga_2O_3 trench SBD.

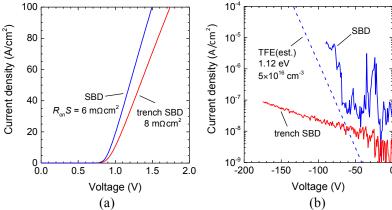


Fig. 2 (a) Forward and (b) reverse *J-V* characteristics.