SiO₂/Al₂O₃/AlGaN/GaN MIS-HEMT の閾値電圧に与える Al₂O₃ 膜厚の効果 Effect of Al₂O₃ thickness on threshold voltage of SiO₂/Al₂O₃/AlGaN/GaN MIS-HEMTs 名工大¹, アルバック² ○久保 俊晴¹, 座間 秀昭², 小林 忠正², 江川 孝志¹

Nagoya Inst. of Tech.¹, ULVAC,Inc.², ^oToshiharu Kubo¹, Hideaki Zama², Tadamasa Kobayashi², Takashi Egawa¹

E-mail: kubo.toshiharu@nitech.ac.jp

1. まえがき

GaN 系パワーデバイスの普及のためには、 ゲートリーク電流の抑制およびノーマリオフ 化が大きな課題である。これらの課題を克服す るため、ゲート電極部分に絶縁膜を挟んだ MIS 構造が精力的に研究されている。我々はこれま でに絶縁膜として Al₂O₃、HfO₂、SiO₂ 膜を原子 層堆積(ALD)により成膜し、Si 基板上 AlGaN/GaN MIS-HEMT デバイスの電気特性を 調べ、報告してきた[I]。それらの報告において、 ゲートに正の高バイアス電圧を印加した際の 初期閾値電圧シフト \(\alpha V_{th}\) が問題となっている。 そこで、本研究では、ALDにより AlGaN 上に 成膜した Al₂O₃ 膜上にさらにプラズマ化学気 相成長(PECVD)により SiO₂ 膜を成膜し、 SiO₂/Al₂O₃ 2 層絶縁膜を用いた MIS-HEMT に ついて、 $\triangle V_{th}$ と Al_2O_3 の膜厚との関係を調べ、 $\triangle V_{th}$ の低減を試みたので、その結果を報告す る。

2. 実験方法

SiO₂/Al₂O₃/AlGaN/GaN MIS-HEMT はこれまでの報告と同様にして作製した。絶縁膜の成膜の際に、Al₂O₃膜を AlGaN 上に TMA と H₂O およびO₃を前駆体として用いた ALD により膜厚を 1nm から 20nm として成膜し、次に SiO₂膜を PECVD により SiH₄と N₂O を用いて Al₂O₃上に 20nm 成膜した。作製した MIS-HEMT の *I-V* 特性を暗所にて測定した。

3. 結果

作製した MIS-HEMT の伝達特性を Fig. 1(a)(b)に示す。Fig. 1(a)は SiO₂ を成膜していない膜厚が 20nm の Al_2O_3 単層の際の特性である。Fig. 1(a)より $\triangle V_{th}$ はこれまでの報告と同様に正バイアス方向に 5 V 程度存在していることが分かる。それに対し、 Al_2O_3 の膜厚が 2nm の 2 層膜の結果である Fig. 1(b)では、閾値のシフトが負バイアス方向に 0.16V に低減されていることが分かる。Fig. 1(a)(b)で立ち上がりの傾

きがやや鈍いのは成膜時の残留不純物の影響が考えられる。 $\triangle V_{th}$ の減少は SiO_2 膜をPECVDにより成膜した際に $\triangle V_{th}$ を生ずる深い電子捕獲準位が消失した結果であると考えられる。次に Al_2O_3 膜の膜厚と $\triangle V_{th}$ の関係をEig.2に示す。縦軸はEig.2に示す。縦軸はEig.2からEig.2からEig.2でいる。Eig.2からEig.2からEig.2からEig.2では表していくにつれ、Eig.20Eig.2

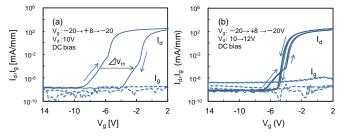


Fig. 1 Transfer curves obtained from MIS-HEMTs. Al_2O_3 and SiO_2 thicknesses are (a) 20 and 0 nm, (b) 2 and 20 nm.

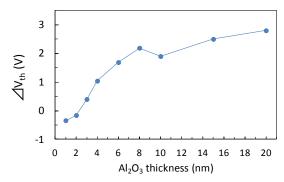


Fig. 2 Dependence of $\triangle V_{th}$ on Al₂O₃ layer thickness.

[1] 久保 他: 第77回応用物理学会秋季学術講演会, 14a-P6-16.

参考文献

謝辞

本研究の一部は JST、愛知地域スーパークラスター プログラムの支援を受けて行われた。