Molecular beam epitaxy of palladates with square-planar coordinated palladium

¹NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan,

²Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 , Japan,

[°]Yoshiko Nanao^{1,2}, Ai Ikeda¹, Michio Naito², Hideki Yamamoto¹, Yoshiharu Krockenberger¹ E-mail: nanao_yoshiko_q2@brl.ntt.co.jp

The structural pattern of a planar coordinated transition metal ion is a scarcity and such a coordination type has been known for Ni²⁺, Cu²⁺, Cu³⁺, Pd²⁺, Pt²⁺, and Au³⁺. Amongst them Cu²⁺ is known to form infinite corner-sharing networks resulting in the Nd₂CuO₄ structure which is a high T_c superconductor. Similarly, Pd²⁺ can be stabilized as well in the Nd₂CuO₄ structure type, though electronic correlations of Nd₂PdO₄ have not been investigated by single crystals. Here we report on the synthesis of epitaxially grown thin films of Nd_{2-x}Ce_xPdO₄ by reactive molecular beam epitaxy. We find that the formation of edge-sharing PdO₂ plaquettes is in competition to other coordinations of palladium, i.e., Nd₂Pd₂O₅ and Nd₄PdO₇. Moreover, thermodynamic constraints are imposed to the synthesis of Nd_{2-x}Ce_xPdO₄ as decomposition into PdO + Nd₂O₃ or Pd + Nd₂O₃ are determined by the synthesis temperature. Eliminating the thermodynamically favorable phase of Nd₄PdO₇ by diligently controlling the stoichiometry and the oxidizing conditions during the synthesis is paramount for the growth of single crystalline thin films of Nd_{2-x}Ce_xPdO₄.