水素フリーおよび水素化 DLC 膜の形成と膜質分析

Formation and Characterization of Hydrogen-Free and Hydrogenated DLC Films

豊橋技科大¹, 伊藤光学², 神奈川県産技セ³, 岡山県工技セ⁴,兵庫県立大⁵ 飯島 佑史¹, 須田 善行¹, 滝川 浩史¹, 國次 真輔⁴, 新部 正人⁵, 神田 一浩⁵ ⁰針谷 達¹, 今井 貴大¹, 飯島 佑史¹ , 神谷 雅男², 金子 智³,

Toyohashi Univ. Technol.¹, Itoh Opt. Ind. Co., Ltd.², Kanagawa Ind. Technol. Cent.³,

Ind. Technol. Cent. of Okayama⁴, Univ. of Hyogo⁵

[°]Toru Harigai¹, Imai Takahiro¹, Yushi Iijima¹, Yoshiyuki Suda¹, Hirofumi Takikawa¹, Masao Kamiya², Satoru Kaneko³, Shinsuke Kunitsugu⁴, Masahito Niibe³, Kazuhiro Kanda⁵ E-mail: harigai@ee.tut.ac.jp

1. はじめに

優れた機械的特性等によりハードコーティ ング膜としての産業利用が進むダイヤモンド ライクカーボン (DLC) 膜であるが, その幅広 い膜特性から,コーティング膜として目指す機 能に対し、適切な DLC 膜を選択する必要があ る。本研究では、フィルタードアーク蒸着法に より、水素フリー (Hydrogen-free) および水素 化(Hydrogenated) DLC 膜を作製し, 膜質分析 を行った。各 DLC 膜の分析結果から, DLC 物 性の傾向を検討した。

2. 実験方法

DLC 膜の形成には、T 字状フィルタードア ーク蒸着装置¹⁾を用いた。水素化 DLC 膜は, 成膜時にチャンバー内へ水素(H₂)または炭化 水素 (C₂H₂, C₂H₄) ガスを導入することで形成 した。基板バイアスおよび導入ガス種・流量を 変えることで,DLCの膜質を変化させた。

膜質分析として、ラマン分光分析,X線反射 率測定(XRR),吸収端近傍 X 線吸収微細構造 (NEXAFS) 測定, ラザフォード後方散乱/弾 性反跳検出分析 (RBS/ERDA), ナノインデン テーション、および分光反射率測定を行った。

3. 結果と考察

膜質分析から,ガス導入なしで基板バイアス を Pulse -100 V として形成した DLC 膜 $(I_D/I_G$ 比 0.17, 膜密度 3.1 g/cm³, sp³/(sp³+sp²)比 0.55, 水素含有量 0.1 atm%以下,硬さ 64 GPa,消衰 係数 0.06 @ λ = 550 nm, 屈折率 2.53 @ λ = 550 nm)は、DLCの中でも硬質なテトラヘドラル アモルファスカーボン (ta-C) に位置付けられ た^{2,3)}。水素含有量 5 atm%以下を水素フリー DLC, 5 atm%より多く含むものを水素化 DLC として, Fig. 1 に各 DLC の膜密度と硬さの関 係をまとめた。DLCの膜密度と硬さの関係は, 密度の3乗で表される曲線(図中破線)とよく 一致した。また, Fig.2には屈折率と消衰係数 の関係を示す。水素フリーDLC では、消衰係 数の変化に対して, 屈折率はほぼ変わらなかっ た。一方,水素化 DLC では,消衰係数,屈折 率ともに増減した。水素フリーDLC では,炭 素原子の結合構造変化のみによる膜構造変化 であるのに対し,水素化 DLC では,水素-炭素 原子の結合による膜構造変化が加わる。水素化

Fig. 1. Nanoindentation hardness of DLC films for the film density.

Fig. 2. Optical properties of DLC films calculated from spectral reflectometry analysis.

DLC 膜では水素含有量の増加にともない、膜 のグラファイト化による消衰係数の増加に加 え,炭化水素状ポリマー化による消衰係数と屈 折率の減少が生じたと考えられる。

謝辞

本研究は、科学研究費補助金、大澤科学技術振興財 団,電子回路基板技術振興財団および内藤科学技術振 興財団の支援を受けて行われた。

参考文献

- 1) H. Takikawa, et al.: Surf. Coat. Technol., 163 (2003) 368.
- 2) 大竹, et al.: New Diamond, 28 (2012) 12.
- 3) 田中, *et al*.: New Diamond, 32 (2016) 3.