導電性ハードコーティングに向けた

DLC および窒化 DLC 膜の積層

Preparation of multilayer film of DLC and Nitrogenated DLC toward Conductive Hard Coating

⁰飯島 佑史¹, 今井 貴大¹, 磯野 凌¹, 針谷 達¹, 須田 善行¹, 滝川 浩史¹, 神谷 雅男², 金子 智³, 國次 真輔⁴ (1.豊橋技科大, 2.伊藤光学, 3.神奈川県産技セ, 4.岡山県工技セ) ^oYushi Iijima¹, Takahiro Imai¹, Ryo Isono¹, Toru Harigai¹, Yoshiyuki Suda¹, Hirofumi Takikawa¹, Masao Kamiya², Satoru Kaneko³, Shinsuke Kunitsugu⁴

(1.Toyohashi Univ. Technol., 2. Itoh Opt. Ind. Co., Ltd., 3. Kanagawa Ind. Technol. Cent.,

4. Ind. Technol. Cent. of Okayama)

E-mail: iijima.yushi@pes.ee.tut.ac.jp

1. はじめに

ダイヤモンドライクカーボン (DLC) 膜は, 高硬度,低摩擦などの優れた特性を持つが,導 電性は低い。一方,DLC 膜に窒素を含有させ た DLC (N-DLC) 膜は導電性保護膜として期 待されている¹⁾。しかし,N-DLC 膜は導電性 が向上する反面,硬度が減少するために耐摩 耗性が低くなってしまう²⁾。本研究では,DLC 膜とN-DLC 膜を用いた積層 DLC 膜を作製し, 耐摩耗性と導電性を検討した。

2. 実験方法

T字状フィルタードアーク蒸着(T-FAD)装置 ³⁾を用いて,超硬(TH10)基板上に単層 DLC 膜(基板バイアス-100 V),N-DLC 膜(-500 V)を作製した。また,4層と8層の積層 DLC 膜を作製した。積層膜は,N-DLC,DLC 膜の順に同じ膜厚で交互に積層させた。全体膜厚が400~500 nm となるように成膜した。炭素源は黒鉛,窒素含有は成膜時に窒素(N₂)ガスを導入した。成膜した膜について,カロテスト(回転速度1000 rpm,実施時間 60 s,基板角度 60°)を実施し,膜の削れ具合から耐摩耗性を評価した。また,超硬基板に対して2 MPa の荷重をかけながら,ソースメータで膜厚方向の抵抗を測定後,抵抗率を算出した。

3. 結果と考察

Fig.1 に,各 DLC 膜のカロテスト摩耗痕の光 学顕微鏡写真を示す。また,Table 1 にカロテス ト結果のまとめ,膜厚,および抵抗率を示す。 比較的柔らかい単層 N-DLC 膜は,母材露出半 径が大きく,最も摩耗が多かった。一方,単層 DLC 膜と4層 DLC 膜は同程度の耐摩耗性を示 した。また,4層 DLC 膜と比べ,8層 DLC 膜 は耐摩耗性が向上した。

耐摩耗性が高い単層 DLC 膜は高い抵抗率を 示し、耐摩耗性が低い単層 N-DLC は低い抵抗 率を示した。一方、4 層および 8 層 DLC 膜は 単層 DLC 膜より抵抗率が低くなった。以上の ことから、耐摩耗性に優れた導電性薄膜が作製

Fig. 1. Photographs of surface (a) DLC monolayer, (b) N-DLC monolayer, (c) DLC/N-DLC alternate 4 layer, and (d) DLC/N-DLC alternate 8 layer, abraded by Calotest.

Table 1. Calotest results and resistivity. ((a)-(d) are same as show in Fig. 1)

sample	Base material exposure radius x (mm)	Abraded film width y (mm)	Thicknesses from Calotest / Dektak (nm)	Resistivity (Ωcm)
(a)	0.07	0.06	400 / 400	27,000
(b)	0.15	0.04	480 / 450	390
(c)	0.07	0.07	480 / 480	13,000
(d)	0.04	0.08	460 / 440	11,000

できたと考えられる。

謝辞

本研究の一部は,科学研究費補助金,大澤科学技術 振興財団,電子回路基板技術振興財団,および内藤科 学技術振興財団の支援を受けて行われた。

参考文献

- 株式会社野村鍍金,導電性硬質炭素膜及びその成 膜方法,特開 2011-077333,2012-06-07
- 2) L.K.Cheah, et al.: Non-cryst. Solid, 242 (1998) 40.
- 3) H. Takikawa, et al.: Surf. Coat. Technol., 163 (2003) 368.