Spin-orbit torque memristor, operated by pulsed currents
RIEC*/CSRN*/CSIS*/CIES*/WPI-AIMR5, Tohoku University

*Aleksandr Kurenkov1, Samik DuttaGupta1,2, Chaoliang Zhang1, William A. Borders1, Shunsuke Fukami1-4, and Hideo Ohno1-5
E-mail: kurenkov@riec.tohoku.ac.jp

Recently, analogue-like (memristive) spin-orbit torque (SOT) induced magnetization reversal at zero fields was demonstrated in antiferromagnet (AFM)/ferromagnet (FM) systems [1,2]. It was found that AFM plays a triple role: generates SOT, imposes effective in-plane field due to exchange bias (EB) [1] and gives rise to memristive behavior due to domain-to-domain variation of EB [3]. The system is attractive for neuromorphic computing [4]; however, only operation by dc currents was studied so far. Here we show that \(\tau_p \) down to nanoseconds can be used for reliable operation of memristive devices.

We fabricated Hall bar devices with a PtMn/[Co/Ni] stack through sputter-deposition, electron beam lithography and Ar ion milling. To provide EB, fabricated devices were annealed at 300°C for 2 hours in the presence of 1.2 T magnetic field, collinear to the channel.

Hall resistance \(R_{\text{Hall}} \) versus voltage \(V \) (\(R_{\text{Hall}}-V \)) curves for \(\tau_p \) in the range from 2 s to 1 ns are shown in Fig. 1. Three modes of switching are observed: for \(\tau_p > 10 \) ms, \(R_{\text{Hall}}-V \) curves are independent of \(\tau_p \) (Fig. 1(a)); for \(\tau_p < 10 \) ms, average switching voltage \(\langle V_{\text{SW}} \rangle \) increases with decreasing \(\tau_p \); for \(\tau_p < 500 \) ns, both \(\langle V_{\text{SW}} \rangle \) and the slope of switching region increase (Fig. 1(c)). We find that Joule heating is responsible for this behavior and enables new functionality, such as multiple pulses lengths integration. Reproducibility of short pulse operation is ensured by performing 100 write cycles at \(\tau_p = 10 \) ns, 1 \(\mu \)s, 10 ms. The result indicates that reliable separation of \(R_{\text{Hall}} \) states can be achieved for all the studied \(\tau_p \). We conclude that SOT-induced memristive operation can be controlled by pulse length as well as pulse magnitude. The obtained characteristics can pave a way to go beyond digital computing and offer various opportunities such as counters/integrators and artificial synapses in neuromorphic computing.

This work was partly supported by R&D project for ICT Key Technology of MEXT.

Fig. 1. \(R_{\text{Hall}}-V \) hysteresis loops. Three qualitatively different regimes are found for (a) \(10 \) ms \(\leq \tau_p \leq 2 \) s, (b) \(1 \) \(\mu \)s \(\leq \tau_p \leq 10 \) ms and (c) \(\tau_p < 1 \) \(\mu \)s. Black arrows in (a) indicate direction of \(V \) sweep with start from 0 V.