Fabrication of low B-doped p-BaSi$_2$/n$^+$-Si heterojunction solar cells

M. Emha Bayu1, R. Takabe1, S. Yachi1, K. Toko1, T. Suemasu1

1Univ. of Tsukuba, Inst. Appl. Phys.
E-mail: s1620378@u.tsukuba.ac.jp

[Introduction]
Semiconducting BaSi$_2$ has attracted attention as a future absorber-layer material for thin-film solar cells. It has an indirect band gap of approximately 1.3 eV, matching the solar spectrum, and has large absorption coefficients, reaching 3.0×10^4 cm$^{-1}$ at 1.5 eV [1,2]. We have successfully fabricated n-Si/B-doped p-BaSi$_2$ heterojunction solar cells that achieved a conversion efficiency η of 9.9% [3]. In the work mentioned, B-doped p-BaSi$_2$ $(p = 2.2 \times 10^{18}$ cm$^{-3}$) with an optimum thickness of 20 nm acts as a hole transport layer [3]. The deterioration of η in thicker p-BaSi$_2$ layers is suspected due to the small minority-carrier lifetime τ of p-BaSi$_2$. In previous work, we confirmed that τ strongly depends on the hole concentration p of p-BaSi$_2$. We measured that low doped p-BaSi$_2$ with $p = 1.4 \times 10^{16}$ cm$^{-3}$ has a τ of 2.0 μs, two orders higher than sample with $p = 3.9 \times 10^{18}$ cm$^{-3}$ [4]. In order to utilize B-doped p-BaSi$_2$ as an active layer, we need to employ n-Si with lower resistivity (higher electron concentration n), so that the depletion region stretches toward the p-BaSi$_2$ layer, and that the device has a sufficient built-in potential at the junction.

In this work, we fabricated 300-nm-thick low-doped p-BaSi$_2$ on the Si substrates with various resistivities and examined the electrical properties using J-V characteristics. We then evaluated the result from the crystallinity point of view.

[Experiment]
Briefly, a 5-nm-thick template layer was grown by Ba deposition on a hot n-Si(111) substrates (T_{sub} = 500°C, T_{ba} = 543°C) with resistivity ρ varied from 0.01–0.1 to 0.1–1.0 and 1.0–4.0 Ωcm. Next, Ba, Si, and B were coevaporated to form approximately 300-nm-thick a-axis-oriented B-doped p-BaSi$_2$ epitaxial films by MBE (T_{sub} = 600°C, T_{ba} = 569°C, R_{si} = 2.0 Å/s). The boron k-cell temperature T_b was set to 1000°C which correspond to a p of 1.4×10^{16} cm$^{-3}$. Finally, the samples were capped with a 5 nm-thick a-Si as a passivation layer. The crystallinity of BaSi$_2$ was investigated by RHEED and θ-2θ X-ray diffraction (XRD). The current density versus voltage (J-V) curves were measured under standard AM1.5, 100 mW/cm2 illumination at 25°C. We also measured the FWHM of the X-ray rocking curve using BaSi$_2$(600) diffraction.

[Results and discussion]
Figure 1 shows the J-V characteristic of sample with different substrate ρ values. In Fig. 1, we see that the rectifying characteristics in the J-V curves gradually disappears as ρ decreases. The J-V characteristic shows a clear ohmic-like behavior when the substrate ρ is less than 0.1 Ωcm even though the depletion region in the p layer are calculated to be less than 200 nm, thinner than the p-BaSi$_2$ layer thickness.

The FWHM values obtained from an ω-scan x-ray rocking curve using a BaSi$_2$(600) diffraction peak of sample with different substrate ρ values are plotted in Fig. 2. In Fig. 2, the degree of preferred a-axis orientation degraded as we decreased the substrate ρ. The decrease of the crystalline quality is probably one possible driving forces behind the degradation of rectifying characteristics in J-V curves. We plan to conduct TEM observations to see what happens around the p-BaSi$_2$/n-Si interfaces to gain further information.

[Acknowledgments] This work was financially supported in part by JST-CREST and JSPS (15H02237).

![Fig. 1 J-V characteristic of p-BaSi$_2$/n-Si of samples with different Si substrate ρ.](image1)

![Fig. 2 FWHM values obtained from an ω-scan x-ray rocking curve of BaSi$_2$(600) fabricated on n-Si(111) with different ρ values.](image2)

[Reference]