Solution-processed Back-contact PEDOT:PSS/c-Si Heterojunction Solar Cells
Graduate School of Science and Engineering, Saitama University,
Q. Liu, J. Hossain, A. T. M. Islam, R. Ishikawa, and H. Shirai
E-mail: shirai@fms.saitama-u.ac.jp

Introduction: We demonstrated highly efficient conductive polymer PEDOT:PSS/c-Si heterojunction solar cells with an efficiency of 13-15% using spin-coated PEDOT:PSS on top of flat N-type Si(100) substrate. Also, we demonstrated the PV performance of solar cell module with 2 cm² and 4 inch wafers (in this meeting). In this study, we present a solution-processed PEDOT:PSS/c-Si heterojunction solar cell with a back contact structure (Fig. 1) to improve the stability of the device performance and to suppress the incident optical loss of front side.

Experiment: N-type CZ c-Si wafers (1-5 Ω·cm, 150 µm thickness) were used as a substrate. They were cleaned by organic solvents followed by HF etching (5%, 2 min) to remove native oxide. Then, the substrates were treated by a conventional Topcon approach using 10wt% HNO₃ to reform SiOₓ layers. Commercialized PEDOT:PSS (Clevios PH1000) using EG(7wt%) and Zonyl(0.2wt%) as dopants was spin coated at 2000 rpm for 30s followed by thermal annealing at 140˚C for 20 min. Subsequently, 2wt% Nafion solutions in IPA were spin coated at 2000 rpm for 1min on front of the rear sides as a passivation layer, followed by annealing at 100˚C for 10 min. After that, Ag and InGa fingers were yielded as intergraded structures on top of PEDOT:PSS and bared Si area where the PEDOT:PSS were been removed, respectively. The back-contact PEDOT:PSS/c-Si solar cells were characterized using life time measurement, I-V, EQE, and 2D mapping of solar cell parameters.

Conclusion: Figure 1 shows the I-V curves of back-PEDOT:PSS junction solar cells on plane c-Si wafer with different cell performance was been dramatically improved to 10.6% with a Jsc of 29mA/cm², a Voc of 0.61V and an FF of 0.61 due to well passivated interface by Topcon treatment and Nafion deposition, although efficiency is still lower than convention front PEDOT:PSS/c-Si solar cell due to higher contact resistance of solution-processed integrated electrode and insufficient passivation of Si surface at anode/cathode gap. We will discuss the potential of back-contact PEDOT/c-Si device.

Figure 1. (Left) Schematic and photo of back-contact PEDOT:PSS/c-Si cell. Device size is 2×2cm². (Right) J-V curves of back-contact devices with different active areas defined by metal masks.

Acknowledgement: Authors thank Prof. Noge and Prof. Saito from Fukushima. U for their fruitful discussion. Q. Liu appreciates the financial support by the Sasakawa Scientific Research Grant.