Magnetic Field Angle Dependence of Pulse Laser-Induced Magnetostatic Surface Wave in Permalloy Thin Film ^OA. Kamimaki^{1, 2}, S. Iihama², Y. Sasaki^{1, 2}, Y. Ando² and S. Mizukami¹ (1. WPI-AIMR, Tohoku Univ. 2. Dept. of Appl. Physics, Tohoku Univ.) E-mail: a.kamimaki17@mlab.apph.tohoku.ac.jp

Magnetostatic surface waves (MSSWs) have been mainly studied by electrical ways using microwave antennas^[1]. Recently, all-optical characterization of MSSWs has been demonstrated in magnetic metals^[2]. However, there has been no study to systematically investigate the characteristics. Here, we report magnetic field angle dependence of pulse laser-induced MSSWs in permalloy thin film and demonstrate, for the first time, visualization of dispersion relation.

The 20-nm-thick permalloy film was deposited by magnetron sputtering. MSSWs were detected by space-and-time resolved magneto-optical Kerr effect microscope^[2]. The fluence of pump is about 0.5 cm². The external magnetic field $\mu_0 H_0 = 0.3$ T with $\theta_0 = \pm 4$ and 13 deg. was applied, where θ_0 is measured from the film normal. In each θ_0 , the MSSW packet was clearly observed for both of propagating direction. Fig. 1 shows dispersion relation visualized from FFT analysis of change in the Kerr rotation angle $\Delta \theta_{\rm K}$ as a function of pump-probe distance and delay time measured at $\theta_0 = +4$ deg. The obtained data roughly agreed with the calculated one. Fig. 2 shows the θ_0 dependence of the group velocity v_g obtained by the Gaussian-type wave-packet fitting, same as ref. [2]. These v_g values are also consistent with the calculated one defined as $v_g = 2\pi \partial f / \partial k_0$, where $k_0 = 0.87 \text{ rad}/\mu\text{m}$ is the mean wave number, and show reciprocal propagation for both of $\pm k$ (inset in Fig. 2).

This work was partially supported by KAKENHI (Nano Spin Conversion Science, No. 26103004) and the center of Spintronics Research Network. A. K and Y. S thank to the GP-Spin in Tohoku univ. and S. I thanks to the Grant-in-Aid for JSPS Fellows (No. 2-7881).

- [1] K. Sekiguchi et al., Appl. Phys. Lett. 97, 022508 (2010).
- [2] S. Iihama et al., Phys. Rev. B. 94, 020401(R) (2016).

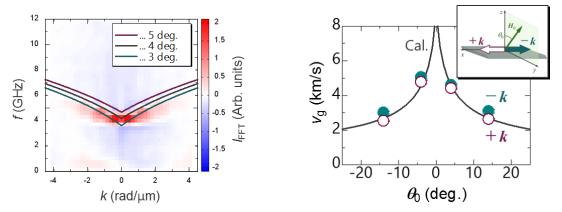


Fig. 1: Experimentally obtained dispersion relationship of Fig. 2: The group velocity v_g as a function of the magneticrotation angle $\Delta \theta_{\rm K}$. The soled curves are calculated data.

MSSW for the field angle $\theta_0 = +4$ deg. I_{FFT} is the FFT field angle θ_0 . Open and solid circles show +k and -k respecintensity analyzed from pump laser-induced change in Kerr tively. The curves are calculated from dispersion relations. In-set; geometry of the magnetic field and the propagating directions of MSSWs.