Characterization of p-BaSi₂/n-Si solar cells using Boron-doped p-BaSi₂ on textured n-Si (001) grown by molecular beam epitaxy

Univ. Tsukuba ¹, Nagoya Univ. ², [°]T. Deng¹, R. Takabe¹, Z. Xu¹,

K. Toko¹, K. Gotoh², N. Usami², T. Suemasu¹,

E-mail: bk201630101@s.bk.tsukuba.ac.jp

[Introduction]

Barium disilicide (BaSi₂) has attractive features for solar cell application such as a suitable band ^[1], a large minority-carrier lifetime ($\tau \sim 10 \text{ } \mu\text{s}$) ^[2] and a large minority-carrier diffusion length ($L \sim 10 \ \mu m$) ^[3]. Power conversion efficiency (η) was expected to be larger than 25% only in a 2-µm-thick BaSi₂ pn junction diode^[4]. In our previous work, it was demonstrated that *a*-axis of BaSi2 was oriented normal to the (111)-oriented texture on the Si(001) substrate and light trapping took place ^[5]. To ensure how thickness and hole concentration of boron(B)-doped p-BaSi₂ influence the performance of p-BaSi₂/n-Si hetero-junction solar cell, in this study, we attempted to grow a series of B-doped p-BaSi2 with different thickness and hole concentration on textured Si (001).

[Experiment]

First, a 5-nm-thick BaSi₂ layer was grown to control the crystal orientation of BaSi₂ over layers by reactive deposition epitaxy process. Second, approximately 20-, 50-, 75-, and 100-nm-thick B-doped BaSi₂ layers were grown by molecular beam epitaxy (MBE) with various sets of B K-cell temperature $(T_{\rm B})$ and substrate temperature $(T_{\rm S})$. $(T_{\rm B}, T_{\rm S})$ were set at (1230°C, 600 °C); (1230 °C, 650 °C), and (1300 °C, 650 °C), respectively, and the hole concentration (p)was found to be 2.0×10^{18} , 4.6×10^{18} , and 3.6×10^{18} cm⁻³, respectively. Then, а 3-nm-thick a-Si layer was prepared over the BaSi₂ layers to prevent oxidation of BaSi₂. After that, ITO electrode with a diameter of 1 mm and thickness of 80nm was sputtered on the front side. 150 nm Al was sputtered at the back. Afterwards, J-V characteristics and photoresponse were measured.

[Results & Discussions]

Figure 1 shows *J-V* curves of a series of samples measured under AM1.5 illumination. p was 3.6×10^{18} cm⁻³. As the p-BaSi₂ film increases from 20 to 75 nm, the solar cell performance was improved. The conversion efficiency (η) increases from 0.17% to 4.52% and the open-circuit voltage was increased from 0.04 to 0.30 V. For further increase in

p-BaSi₂ layer thickness up to 125 nm, however, the η goes down to 3.18% and the short-circuit current density decreases from 27.6 to 21.2 mA/cm².

Figure 2 shows the EQE spectra of the samples of various $p-BaSi_2$ thicknesses. With increasing the layer thickness, the EQE decreases especially in the short wavelength range, meaning that the contribution of photogenerated carriers in the $p-BaSi_2$ becomes small.

[Acknowledgments]

This work was financially supported in part by JST-CREST and JSPS (15H02237).

[Reference]

[1] K. Toh, et al., Jpn. J. Appl. Phys. 50 (2011) 068001.

[2] K. O. Hara *et al.*, J. Appl. Phys. **112** (2012) 083108.

[3] M. Baba, et al., J. Cryst. Growth. 348 (2012) 75.

[4] T. Suemasu and N. Usami, J. Phys. D: Appl. Phys. **50** (2017) 023001.

[5] T. Deng et al., The 77th JSAP Autumn Meeting, 15a-B3-6 (2016).

Fig. 1 *J-V* characteristics under AM1.5 illumination measured for samples with different p-BaSi₂ thicknesses.

Fig. 2 *EQE* spectra for p-BaSi₂/n-Si heterojunction solar cells with various p-BaSi₂ thicknesses.