Study of the electrical properties of CuGaSe₂ thin-film solar-cells using admittance

spectroscopy

Tsukuba Univ.¹, AIST², ^o Muhammad Monirul Islam¹, Shogo Ishizuka², Hajime Shibata², Shigeru Niki,², Katsuhiro Akimoto¹, and Takeaki Sakurai¹

E-mail: islam.monir.ke@u.tsukuba.ac.jp

Chalcopyrite Cu(In,Ga)Se₂ (CIGS), a binary alloy of CuInSe₂ and CuGaSe₂, is a promising material for high-efficiency thin-film solar-cells. Band-gap of the CuInSe₂ is 1.04 eV, while it becomes 1.68 eV for the CuGaSe₂. Thus, band-gap of CuGaSe₂ is close to the ideal band-gap of the absorber-layer to achieve highest possible efficiency. Moreover, larger band-gap makes CuGaSe₂ suitable for the top-cell in the tandem solar-cell structure together with CuInSe₂ as a bottom-cell. Nevertheless, so far, CuGaSe₂ solar cells with a CdS buffer have achieved efficiency of around 11%. Therefore, to achieve the efficiency beyond current limit, an extensive study of the CuGaSe₂-material including defect-study with various compositions is indispensable. In this paper, we have used admittance spectroscopy to study the defect properties of CuGaSe₂ thin-film solar cells, where CuGaSe₂ thin-films were grown with various Se-flux (P_{Se}) conditions.

Polycrystalline CuGaSe₂ thin-films with 2 μ m of thickness were grown over Mo-coated soda lime glass (SLG) substrates through three-stage co-evaporation process. Several samples were deposited by changing the P_{Se} -conditions. Admittance spectroscopy (AS) was carried out in the dark within the temperature range, 50 ~ 380 K using Agilent 4284A LCR meter. Modulation frequency was varied from 1 kHz to 1 MHz. For AS measurement, we considered the depletion region as a parallel combination of capacitance, C_p and conductance, G_p , thus admittance becomes, $Y = G_p + i\omega C_p$. Since, imaginary part C_p and real part G_p in the admittance term are related explicitly by Kramers- Kronig relations, similar information can be obtained from both C_p and G_p . Here, we used both parameters to investigate the nature of the trap signatures found in our measurement.

Fig. 1 Admittance spectra of (a) CuGaSe₂-based solar-cell structure (ZnO/CdS/CuGaSe₂/Mo/SLG) at various frequencies; (b) CuGaSe₂ solar cells with various P_{Se} conditions during CuGaSe₂ growth.

Shown in Fig. 1(a), is the temperature dependence admittance spectra of a CuGaSe₂- based solar cells at various frequencies, where CuGaSe₂ films were deposited with low Se-flux condition of 2.39×10^{-3} Pa. AS spectra shows two major peaks, α and ζ . Peak- α is usually attributed to the Cu-vacancy in the CuGaSe₂ material, while peak- ζ corresponds to the electrical response of a defect-level within the band-gap of the CuGaSe₂. Increase in the temperature shifts the AS-peaks (*i.e.*, characteristic frequency, ω_0) to the higher value. Thus, activation energy, E_A of a particular defect could be calculated from the slope of the corresponding Arrhenius plots, $\ln(\omega_0/T^2)$ versus 1/T. Here, T is the temperature of the AS-peak. E_A of the Peak- α and ζ was calculated as ~ 50 meV and 350 meV above valance band (E_V) of the CuGaSe₂, respectively. As seen from the Fig. 1(b), in general, intensity of the peak- ζ increases with a decrease in the P_{Se} -condition during growth of the CuGaSe₂ films.

Defect-parameters including defect-density, capture cross-section *etc.* were calculated, and compared with the P_{Se} -condition during growth. In general, CuGaSe₂ samples grown with higher P_{Se} show lower defect density (peak- ζ), and improved solar-cell performances. Origin of the peak- ζ has been discussed. Temperature-dependent *AC*-conductance (G), and capacitance-voltage (*C-V*) measurement was performed to obtain transport properties, charge-density *etc.*, and discussed in relation to the Se-flux condition during deposition of the CuGaSe₂ films.