Diamond NOT and NOR logic circuits

$^\circ$ Jiangwei Liu, Meiyong Liao, Masataka Imura, and Yasuo Koide

National Institute for Materials Science (NIMS)

E-mail: liu.jiangwei@nims.go.jp

It is well-known that wide bandgap semiconductors such as GaN, SiC, and diamond are suitable to replace silicon partly for fabrication of high-power and high-frequency electronic devices because of their large band-gap energies, high carrier mobility, and high breakdown field. According to figure of merit, diamond-based electronic devices have the largest power-frequency product, the highest thermal limitation, and the lowest power-loss at high-frequency. Thus, diamond semiconductor devices are expected to be of very importance for the future practice applications. Recently, controlling conditions for depletion-mode (D-mode) and enhancement-mode (E-mode) hydrogenated diamond (H-diamond) metal-oxide-semiconductor field-effect transistors (MOSFETs) have been clarified [1]. There are two necessary conditions for fabrication of E-mode H-diamond MOSFETs, which are a bilayer gate oxide structure deposited by atomic layer deposition (ALD) and sputtering deposition (SD) techniques, and annealing at 150-350 °C for the devices. The ALD-oxide with a thickness of 4.0 nm impacts as a buffer layer for the deposition of SD-oxide. On the other hand, even there is an annealing process for the H-diamond MOSFET with a single ALD-Al₂O₃ layer as the gate oxide, the MOSFET still operates with a D-mode characteristic. After improving the electrical properties of H-diamond MOSFETs and fabricating D/E-mode H-diamond MOSFETs controllably, next challenge is to combine these devices to be logic circuits. In this study, the H-diamond NOT and NOR logic gates composed of D-mode ALD-Al₂O₃/H-diamond and E-mode SD-LaAlO₃/ALD-Al₂O₃/H-diamond MOSFETs will be fabricated.

Fig. 1 (a) shows voltage transfer characteristics (VTCs) of the H-diamond E/D-mode NOT logic gate with the V_{DD} changing from -5.0 to -25.0 V. There are distinct inversion characteristics for the input signal of the H-diamond E/D-mode MOSFET NOT gate. If the V_{in} is 0 V, the E-mode LaAlO₃/Al₂O₃/H-diamond MOSFET is in the off-stage, resulting in V_{out} close to V_{DD} . Likewise, if the V_{in} is -10.0 V, the E-mode LaAlO₃/Al₂O₃/H-diamond MOSFET turns on, resulting in V_{out} close to the ground level. Gain curve defined by $-dV_{out}/dV_{in}$ in the VTCs can be deduced and shown in the Fig. 1 (b). The maximum gain value increases from 1.1 to 26.1 with the V_{DD} changing from -5.0 to -25.0 V. Fig. 1 (c) shows the V_{out} of the H-diamond D/E-mode MOSFET NOR gate as functions of V_{in} . There are four states for the input voltages of logical (1, 1), logical (1, 0), logical (0, 1), and logical (0, 0). For each V_{in} state, the measurement time is 60 s. If both V_{in1} and V_{in2} are -10.0 V [logical (1, 1) state], the V_{out} is -1.86 ±0.10 V and logical 0. If the V_{in1} and V_{in2} are 0 and -10.0 V, respectively [logical (0, 1) state], the V_{out} is -1.92 ±0.10 V and logical 0. If both V_{in1} and V_{in2} are 0 V [logical (0, 0) state], the V_{out} is -1.00 V and logical 1. These results indicate that our logic gate operates with the NOR characteristics.

Fig.1 (a) VTCs of the H-diamond D/E-mode MOSFET NOT gate with the V_{DD} changing from -5.0 to -25.0 V, (b) the gain curve $(-dV_{out}/V_{in})$ derived from the VTCs, and (c) V_{out} of the H-diamond D/E-mode MOSFET NOR gate as functions of four V_{in} states. The measurement time for each state is 60 s.

Reference

 J. W. Liu, M. Y. Liao, M. Imura, T. Matsumoto, N. Shibata, Y. Ikuhara, and Y. Koide, J. Appl. Phys. 118, 115704 (2015).