PLD で成長した Mn doped ZnO 薄膜の 残留ドナー濃度低減に関する検討 Study on the decrease in the residual donor density of PLD deposited Mn doped ZnO films 阪府大工, ^o金屋 良輔, 高田賢志, 桐谷乃輔, 吉村 武, 芦田 淳, 藤村 紀文 ^oR. Kanaya, K. Takada, D. Kiriya, T. Yoshimura, A. Ashida, N. Fujimura Osaka Pref.Univ E-mail: <u>fujim@pe.osakafu-u.ac.jp</u>

【はじめに】

Dietl らにより Mn をドーピングした ZnO:Mn は p 型の場合、室温で強磁性状態が安定であるこ とが理論的に予言されている ¹⁾ものの、まだ実験的には証明されていない。その理由の一つとし て、ZnO の低い電子供与性欠陥形成エネルギーによって、正孔添加による残留電子濃度や正孔濃 度の制御が困難であるということが挙げられる。したがって、p 型の ZnO:Mn を得るためには、ア クセプタである窒素をドーピングすると同時に残留ドナー濃度を低減させる必要がある。ZnO 単 結晶基板を用いることによって残留ドナー濃度は大きく低減するものの ²⁾、大きなミスフィット

を有する c 面サファイア基板上ではまだ多くの問題が顕在 化している。今回はパルスレーザー堆積(PLD)法を用いて c 面サファイア基板上に ZnO:Mn を製膜し、その成長条件と 残留キャリア濃度との相関を調べた。

【実験方法と結果】

残留ドナー濃度を低減させるためには基板温度を上昇 させることが有効であることはよく知られている。しかし ながら、基板温度の上昇はアクセプタである窒素の薄膜か らの再離脱も加速する³ため、今回は基板温度以外の成長 条件を利用して残留アクセプタ濃度を低減させることを 試みた。ここでは PLD 法で用いる照射レーザー光のパワー 密度依存性の結果を示す。基板には単結晶 c 面サファイア 基板を用いた。作製した試料を X 線回折測定、ホール効果 測定、走査型プローブ顕微鏡を用いて結晶構造解析、電気 特性、表面形状等を評価した。Fig.1 に照射レーザー光のパ ワー密度を増加させたときの基板近傍のプルームの発光 分光分析の結果を示す。レーザーパワー密度の上昇に伴っ

Fig.2 AFM images of ZnO:Mn deposited at the laser power density. (a)0.71 and (b) 1.24 J/cm^2 .

て、プルームの発光における O*(@777nm)と Zn*(@334nm)の比(O*/Zn*)が上昇している。この ことから、レーザーパワーを上昇させることによって残留ドナー濃度を低減することが期待で きる。Fig.2 に薄膜の表面形態の変化について示す。Fig.2(a)、(b)はそれぞれレーザーパワー密 度を 0.71、1.24 J/cm² として製膜を行った試料の表面 AFM 像である。表面形状からレーザーエ ネルギーの上昇とともに粒形が変化していることが分かる。また、キャリア濃度が(a)、(b)それ ぞれ、4.1×10¹⁸、1.8×10¹⁸ cm⁻³ と変化している。レーザーパワーの上昇とともに、キャリア濃度 が低減されているものの、十分とは言い難い。講演では成長速度や成長圧力、そして Mn 濃度 と残留キャリア濃度との相関に関して議論する。

【参考文献】

T. Dietl et al. Science 287, 1019 (2000)
K. Masuko et al., Physical Review B, 80, 12, 125313 (2009)
A.Tsukazaki et al. Nat. Mater. 4, 42 (2005)