Dual role of Cs₂SnI₆: A hole transporter and an absorber for perovskite based solar cells University of Tokyo¹, Kyushu Institute of Technology², University of Miyazaki³, University of Electrocommunication⁴, Ritsumeikan University⁵, National Institute of Advanced Industrial Science &Technology⁶

[°]Gaurav Kapil¹, Takeshi Ohta², Yuhei Ogomi², Tsuguo Koyonagi², Kenji Yoshino³, Qing Shen⁴, Taro Toyoda⁴, Takashi Minemoto⁵, Takurou N. Murakami⁶, Hiroshi Segawa¹, Shuzi Hayase² E-mail: kapil@dsc.rcast.u-tokyo.ac.jp

Introduction

Over the last one year, organic-inorganic lead (Pb) halide based perovskite solar cells (PSCs) have successfully achieved more than 20% photoconversion efficiencies (PCE) in a variety of solar cell architectures [1]. These overwhelming results are mainly due to its good ambipolar electron and hole transport properties, high excitation carrier life time and absorption coefficients. However, the presence of Pb demands to look out for a Pb free material with similar properties. Therefore, there has been a continuous research interest for Pb free new perovskite and perovskite related materials such as Cs_2SnI_6 . Recent studies demonstrated that Cs_2SnI_6 works as a good hole transporter (HT) in dye sensitized solar cells (DSSCs) and also it can be used as lead free absorber in PSCs with PCE less than 1% so far [2]. Here, in this work we present the reasons for low performance of Cs_2SnI_6 based solar cells and possibilities to increase its performance.

Experiment

Impurity free thin films of Cs_2SnI_6 were characterized by X-ray diffraction (XRD), photoluminescence (PL) and transient absorption (TA) to look for its role as light harvester. Device structure as shown in Figure 1 was used for the current study. Also, DSSC was successfully fabricated to confirm its role as HT.

Figure 1. clearly indicates that Cs₂SnI₆ can be used as a

Figure 1. IPCE showing contribution of Cs_2SnI_6 in photocurrent generation

light absorbing layer. With implementation of only electron transport (ET) and hole transport (HT) layer,

there was no contribution of Cs_2SnI_6 in photocurrent generation. We found that both HT and ET layers are therefore necessary for exciton splitting.

Reference

- [1] www.nrel.gov/ncpv/images/efficiency_chart.jpg
- [2] X. Qiu, and M. G. Kanatzidis et al, Sol. Energy Mater. Sol. Cells, 2017, 159, 227–234.