CoFeB thickness dependence of exchange stiffness constants in Ta/CoFeB/MgO determined from domain structures

Laboratory for Nanoelectronics and Spintronics, RIEC, Tohoku Univ.¹, CSIS, Tohoku Univ.²,

CSRN, Tohoku Univ.³, WPI-AIMR, Tohoku Univ.⁴ CIES, Tohoku Univ.⁵,

^O(M1)Naoki Ichikawa¹, (M2)Takaaki Dohi¹, Shun Kanai¹⁻³, (D)Atsushi Okada¹,

Fumihiro Matsukura¹⁻⁴, and Hideo Ohno¹⁻⁵

E-mail: ichikawa@riec.tohoku.ac.jp

In our previous work, we reported magnetic domain structures of CoFeB/MgO and their electric-field modulation [1]. In this work, we investigate the CoFeB thickness t_{CoFeB} dependence of domain structures and determine the CoFeB thickness dependence of exchange stiffness constants A_s .

Stacks, Ta (2 nm)/ Co₄₀Fe₄₀B₂₀ ($t_{CoFeB} = 1.18 - 1.30$ nm)/ MgO (5 nm)/ Al₂O₃ (5 nm), are deposited by dc/rf magnetron sputtering on a thermally oxidized Si substrate. The samples are annealed at 350°C for 1 hour under a perpendicular magnetic field of 0.4 T in vacuum (10⁻⁶ Torr). The t_{CoFeB} is determined from the deposition rate of CoFeB.

The samples are demagnetized by applying an ac perpendicular magnetic field with exponentially decaying amplitude. The domain structures at demagnetized state are observed by magneto-optical polar-Kerr-effect microscope. Figure 1(a) shows a typical domain structure observed for the film with $t_{\text{CoFeB}} = 1.18$ nm. Clear maze pattern is observed for the films with 1.18 nm $\leq t_{\text{CoFeB}} \leq 1.30$ nm. Domain period D_{p} is determined from fast Fourier transform of observed images. The CoFeB thickness dependence of t_{CoFeB} in Fig. 1(b) indicates that D_{p} decreases with increasing t_{CoFeB} . As is determined from D_{p} utilizing an expression of $D_{\text{p}} = (A_{\text{S}}/K_{\text{eff}})^{0.5} \exp\{4\pi\mu_0(A_{\text{S}}/K_{\text{eff}})^{0.5}/M_{\text{S}}^2 t_{\text{CoFeB}}\}$ [2],

where μ_0 , K_{eff} , and M_{S} , are permeability of vacuum, effective magnetic anisotropy density, and spontaneous magnetization, respectively. The K_{eff} and M_{S} are determined from magnetization measurements. The values of A_{S} decrease from ~8 to ~4 pJ/m with decreasing t_{CoFeB} , from 1.3 to 1.18 nm, indicating the presence of the interfacial effect on A_{S} .

from ~8 to ~4 pJ/m with decreasing t_{CoFeB} , Fig. 1. (a) Magnetic domain structure for 1.18-nm-thick from 1.3 to 1.18 nm, indicating the CoFeB. (b) CoFeB thickness t_{CoFeB} dependence of domain period D_{p} .

This work was supported in part by the R&D Project for ICT Key Technology of MEXT, Grants-in-Aid for Scientific Research from MEXT (No. 26103002) as well as JSPS (No. 16H06081).

[1] T. Dohi et al., AIP Adv. 6, 075017 (2016).

[2] A.L. Sukstanskii and K.I. Primak, J. Magn. Magn. Mater. 169, 31 (1997).