Thickness Dependence of Current-Induced Effective Magnetic Field in La_{0.67}Sr_{0.33}MnO₃/SrTiO₃ heterostructure

¹School of Eng.-, and ²RIES-Hokkaido Univ.

^OTatsuro Oyamada^{1*}, Takayoshi Katase², Hiromichi Ohta², and Michihiko Yamanouchi²

*E-mail: t-oyamada@eis.hokudai.ac.jp

Last year, we have reported that effective magnetic field H_{eff} can be induced by the application of in-plane current in an oxide half-metal heterostructure, La_{0.67}Sr_{0.33}MnO₃/SrTiO₃ [1]. In this study, we measured La_{0.67}Sr_{0.33}MnO₃ (LSMO) thickness dependence of H_{eff} to clarify the origin of the H_{eff} on LSMO.

PLD-grown LSMO films (13, 18 and 25 u.c.) on TiO₂-terminated SrTiO₃ (001) substrates were processed into devices with Hall bar electrode geometry having a w = 10-µm wide channel along [100]. Transverse resisitance R_{yx} was measured under application of rotating external magnetic field H_{ext} in the plane. The in-plane angle φ -dependence of R_{yx} in the presense of a static H_{ext} indicates that all the LSMO films have an in-plane biaxial magnetic anisotropy with the easy axes almost along <110> (the hard axes almost along <100>). After aligning magnetization direction by $\mu_0 H_{ext} = 0.5$ T along [110] at device temperture $T_d = 130$ K, we measured R_{yx} under various currents while rotating H_{ext} around one of hard axes [100] in the counterclockwise direction. The magnitude of H_{ext} was seted larger than the magnetic anisotorpy field to prevent domain nucleation. $T_{\rm d}$ was determined by using longitudinal resitance to correct Joule heating. Switching of magnetization direction under positive current occurs at larger φ compared with that under negative current, where positive (negative) current is directed along [100] ([100]). This behaviour is consistent with previous results: H_{eff} along [010] ([010]) is induced by positive (negative) current [1]. We evaluated H_{eff} from the difference of switching angle [2]. Although thinner LSMO film exhibited large H_{eff} at lower current (Figure), it was scaled with the effective current density, I/wt_{eff} , where $t_{\rm eff}$ = total LSMO thickness – dead layer thickness (6 u.c.) [3], suggesting that the $H_{\rm eff}$ can be induced in LSMO bulk reagion.

This work was supported by JSPS KAKENHI for Young Scientists A (15H05517) and Grant-in-Aid for Scientific Research on Innovative Areas (25106007) from the Japan Society for the Promotion of Science.

References

[1] M. Yamanouchi *et al.*, *JSAP Autumn Meeting*, 13p-P8-14 (2016).

[2] A. Chernyshow et al., Nature Phys. 5, 656 (2009).

[3] B. Kim et al., Solid State Commun. 150, 598 (2010).

Figure: I-depnedence of Heff