固体電解質 LiZr₂(PO₄)₃中での Li 拡散経路の第一原理計算による解析

First Principles Analysis of Li Diffusion in LiZr₂(PO₄)₃ Solid State Electrolytes 物材機構¹、学習院大理² ^O池田稔¹,大野隆央¹、三石和貴¹、稲熊宜之²、舩山耕生²、森大輔² NIMS¹, Gakushuin Univ.² ^OMinoru Ikeda¹, Takahisa Ohno¹, Kazutaka Mitsuishi¹, Yoshiyuki Inaguma², Koki Funayama², Daisuke Mori²

E-mail: IKEDA.Minoru@nims.go.jp

【始めに】全固体型のLi二次電池の研究を進めており、第一原理計算によりその伝導経路などをGarnet型、Perovskite型について報告してきた。今回、NASICON型の構造を有するLiZr₂(PO₄)₃に着目した。LZPOは、低温相の α 'phaseと高温相の α phaseの2種類の結晶構造が存在し[1]、300Kで相転移する[2]。 α 'phaseは、三斜晶で \overline{C} の対称性を有し、 α phaseは菱面体晶であり、 $R\overline{3}c$ の対称性を有している。高温相のLi (オン伝導は低温に比べた高いことが報告されていたが、その伝導経路は明確ではなかった。そこで、高温相である α -LiZr₂(PO₄)₃の(オン伝導経路とその活性化エネルギーについて、第一原理計算により詳細に解析したので報告する。

【計算方法】第一原理計算としては、PAW 法[3]を採用し、交換相関エネルキャー項には GGA(PBE 型)の補正を考慮している。活性化エネルキャーの評価には、Nudged Elastic Band 法を用いた[4]。6 LZPO を含む、Hexagonal cell を用いた 108 原子を含む super cell で全ての計算を行った。Brillouin zone 積分は 2x2x1 の 3K 点を用いている。カットオフ・エネルキャーは 550eV である。

【結果と考察】 α -LiZr₂(PO₄)₃の結晶構造を図1に示す。空間群は167番目であり、Liの配置は、 36f、6b、18eと複数位置が可能である。図2には、初期配置としてLiを6bサイトにおいて、温度1600K で300ps間の有限温度でのシミュレーションの軌跡を示す。Liは、18eサイトにはほとんど存在しないことが 分かる。また、大半の時間は6bサイトを中心とした36fサイト位置の存在しており、36fサイト間をホッピング して伝導していることが分かる。36fサイト位置はこのユニットセル内には、6か所存在しており、各サイト位 置でのLi イオンの個数の時間分布を調べると、0、1、2となっており、36fサイトには最大2個のLi イ オンしか存在出来ないことが判明した。図3は、一つの36fサイトにあるLi イオンが最近接の36fサイトに移 動して、一つのサイトはゼロで隣のサイトが2個のLi イオンが存在するときの障壁エネルギーを NEB 計算で見 積もったものであり、その活性化エネルギーは0.64 eV になる。また、Li_{int.+}と V_{Li}の defect pair の生成 エネルギーは、0.24 eV になる。

図1初期構造 図21600K で300ps 間の軌跡 図3 NEB 計算結果 【謝辞】本研究は、JST 戦略的創造研究推進事業 ALCA の支援のもとに行われました。 【参考文献】[1] M. Catti, et al., Solid State Ionics, 123, 173(1999), 136-137, 489(2000). [2] 稲熊他、第42回固体イオニクス討論会、2A-11、名古屋(2016)。

[3] G. Kresse and J. Hafner, Phys. Rev. B47, 558(1993).

[4] G. Henkelman and H.Jonsson, J. Chem. Phys. 113, 9901(2000), 113, 9978(2000).