Tuning the magnetic properties and surface morphology of $D0_{22}$ Mn_{3- δ}Ga film by N doping

NIMS¹, Univ. Tsukuba²; ^oHwachol Lee¹, Hiroaki Sukegawa¹, Jun Liu¹, Seiji Mitani^{1,2}, and Kazuhiro Hono^{1,2}

E-mail: lee.hwachol@nims.go.jp

Recently, tetragonal Mn-based alloys such as L_{10} and D_{022} Mn-Ga alloys [1] have been of great concern in search of new magnetic alloy systems with low Gilbert damping, low saturation magnetization M_s , and high perpendicular magnetic anisotropy K_u for potential applications such as a next generation spin transfer torque-magnetic random access memory. In this work, we present tuning the magnetic properties and surface morphology of D_{022} Mn₃₋₈Ga using a small amount of N doping [2]. 50 nm thick N-doped MnGa films were prepared by RF reactive sputtering technique on an MgO(001) single crystalline substrate at 480°C substrate temperature with the varied 0–0.66% N₂ flow rate percentage (η) relative to Ar 30

sccm for two Mn₃Ga and Mn_{2.5}Ga compositions. N-doped Mn-Ga films all exhibited the gradual reduction in M_s up to 33-50% with the increasing N₂ flow rate as in Fig. 1 (a). In particular, N-doped Mn_{2.5}Ga case revealed the single $D0_{22}$ structural phase formation with the high K_u $\approx 1 \text{ MJ/m}^3$ between $\eta = 0-0.66\%$ range despite the gradual reduction in magnetization, while N-doped Mn₃Ga showed coherent growth of two $D0_{22} + E2_1$ composite phases which results in the further reduction in M_s and $K_u < 1$ MJ/m³, as in Fig. 1 (b). In addition, N doping in both Mn₃Ga and Mn2.5Ga caused the smoothening of the surface morphology with the increasing film thickness up to 50 nm even with the use of the minimum η of 0.25%, as shown in the inset of Fig. 1, which represents the modification of the film growth mode from Volmer-Weber type of $D0_{22}$ Mn-Ga case at this high 480°C growth temperature. Therefore, these results suggest that a small amount of N doping is an effective way of tuning the magnetic properties of DO22 Mn3-6Ga films in addition to obtaining a flat surface at high growth temperature. This work was partly supported by Samsung Electronics.

Fig. 1. (a) Saturation magnetization M_s and (b) perpendicular magnetic anisotropy K_u of 50 nm N-doped Mn₃Ga and Mn_{2.5}Ga with respect to the varied N₂ flow rate percent (η). The inset figures show the surface images taken by atomic force microscopy for $\eta = 0\%$ and 0.25% Mn₃Ga cases.

References:

[1]	S. Mizukami, A. Sakuma, A. Sugihara, K. Z. Suzuki, and	d R. Ranjbar, Scripta Mater.	118 , 70 (2016)
-----	--	------------------------------	------------------------

[2] H. Lee, H. Sukegawa, J. Liu, S. Mitani, and K. Hono, Appl. Phys. Lett. **109**, 152402 (2016).