Correlation between the bias dependence of tunneling anisotropic magnetoresistance and tunneling magnetoresistance in a La$_{0.67}$Sr$_{0.33}$MnO$_3$-based magnetic tunnel junction

L. D. Anh1,2, T. Yamashita1, H. Yamasaki1, D. Araki1, M. Tanaka1,3 and S. Ohya1,2,3

1Department of Electrical Engineering and Information Systems, The University of Tokyo
2Institute of Engineering Innovation, The University of Tokyo
3Center for Spintronics Research Network (CSRN), The University of Tokyo

La$_{0.67}$Sr$_{0.33}$MnO$_3$ (LSMO) is one of the most promising oxide materials for spintronic devices due to its high Curie temperature (T_C ~ 370 K), colossal magnetoresistance [1], and its half-metallicity [2]. The band structure of LSMO around the Fermi level E_F, specifically that at the LSMO / SrTiO$_3$ (STO) tunnel barrier interface, is known to be a complex mixture of the different d-band components, the up-spin e_g and t_{2g} states. The t_{2g} states are located at ~0.5 eV below E_F in the bulk, but are pushed up closer to E_F at the interface [3]. Hence in LSMO, when the carrier energy is tuned between the interfacial e_g and t_{2g} bands, a sharp change of the angular dependence of the density of states (DOS) on the magnetization direction is expected, like in the quantum wells of ferromagnetic semiconductor GaMnAs [4].

Here in this work, using a magnetic tunnel junction (MTJ) consisting of, from the top surface, LSMO [18 unit cell (u.c.)] / STO (10 u.c.) / LSMO (40 u.c.) grown on an STO (001) substrate by molecular beam epitaxy [see Fig. 1(a)], we simultaneously probed the carrier energy dependence of the anisotropy of the DOS, by measuring the magnetic-field-direction dependence of the tunneling anisotropic magnetoresistance (TAMR), and the magnetic-field-direction dependence of the tunneling magnetoresistance (TMR). We measured TAMR by monitoring the change in the tunneling conductance dI/dV when the magnetizations of the top and bottom LSMO layers (M$_t$ and M$_b$) were rotated together in the film plane by rotating a strong external magnetic field $H = 10$ kOe. As shown in Fig. 1(b), dI/dV as a function of θ_H, which is defined as the angle of H measured from the [100] axis, shows a change of about $\pm 1.5\%$, indicating that the DOSs of the LSMO layers change when rotating M$_t$ and M$_b$. Figure 1(b) also indicates that two-fold symmetries along [100] and [110] are dominant in the small bias region (0.14 V $< V < 0.08$ V). Interestingly, the directions of H at which the DOS reaches maximum ($\sim 15^\circ$ $-$ 195°) rotates by 90° when the bias voltage V is changed through $V_p = (0.06$ $-$ 0.095 V) or $V_n = (-0.15$ $-$ -0.13 V) [Fig. 1(b), purple bands]. This signifies a transition of the band character of the tunneling carriers from the e_g band (at E_F, V_n $<$ V $<$ V_p) to the t_{2g} band (below E_F, V $<$ V_n or V $>$ V_p) with changing V [5]. Also, we have found that the θ_H-dependence of TMR changes with V. Using the TAMR data and the TMR data, we discuss their correlations [6] in the presentation.

This work was partly supported by Grants-in-Aid for Scientific Research, CREST program of Japan Science and Technology Agency, and Spintronics Research Network of Japan (Spin-RNJ).

References:

Fig. 1. (a) Device structure and measurement configuration of the tunneling transport of the LSMO/STO/LSMO MTJ structure. (b) Color-mapping plot of the change in dI/dV as a function of θ_H and V. The directions of H where dI/dV reaches maximum rotate by 90° when V is changed through V_p (= 0.06 $-$ 0.095 V) and V_n (= -0.15 $-$ -0.13 V) (purple bands).