ソリッドナノポアによる アルカリ CsCl 溶液下での 1 本鎖 DNA ホモポリマの 4 種塩基識別 Identification of four-nucleotide single-stranded DNA homopolymers with a solid-state nanopore in alkaline CsCl solution ^o後藤 佑介¹、柳 至¹、松井 一真¹、横井 崇秀¹、武田 健一¹

^oYusuke Goto¹, Itaru Yanagi¹, Kazuma Matsui¹, Takahide Yokoi¹, Ken-ichi Takeda¹

1. Hitachi. Ltd., Research & Development Group, Center for Technology Innovation - Healthcare E-mail: yusuke.goto.bo@hitachi.com

DNA sequencing via solid-state nanopore is a promising technology with the potential to surpass the performance of conventional sequencers. However, the identification of all four nucleotides with a typical SiN nanopore has yet to be clearly demonstrated because a guanine homopolymer rapidly forms a G-quadruplex in a typical KCl aqueous solution. To address this issue, we introduced an alkaline CsCl aqueous solution, which denatures the G-quadruplex to a single-stranded structure by disrupting the hydrogen-bonding network between the guanines. Using this alkaline CsCl solution, we provided a proof of principle that single-stranded DNA homopolymers of all four nucleotides could be statistically identified according to their blockade currents with the same single nanopore. We also confirmed that a triblock DNA copolymer of three nucleotides exhibited a trimodal Gaussian distribution whose peaks correspond to those of the DNA homopolymers. Our findings will open the door to achieving solid-state nanopore sequencing.

Figure 1. Discrimination of four kinds of nucleotides. (Left) Typical translocation event of each DNA homopolymer of the ionic current showing DNA translocations for a single nanopore (3.2 nm) with $poly(dC)_{60}$ (yellow), $poly(dT)_{60}$ (green), $poly(dG)_{20}$ (blue), $poly(dA)_{45}$ (red). (Right) All-points blockade current histograms from the nanopore shown in (Left) for (a) $poly(dC)_{60}$ (yellow), $poly(dT)_{60}$ (green), $poly(dG)_{20}$ (blue), $poly(dC)_{60}$ (yellow), $poly(dT)_{60}$ (green), $poly(dG)_{20}$ (blue), $poly(dC)_{60}$ (yellow), $poly(dT)_{60}$ (green), $poly(dG)_{20}$ (blue), $poly(dA)_{45}$. All histograms shown in (a) exhibits a single gaussian distribution.