Fe/MgAl2O4 界面の垂直磁気異方性に関する第一原理解析 First-principles study on perpendicular magnetic anisotropy at Fe/MgAl2O4 interface 物材機構 [○]増田 啓介, 三浦 良雄 NIMS [°]Keisuke Masuda, Yoshio Miura E-mail: MASUDA.Keisuke@nims.go.jp

Perpendicular magnetic anisotropy (PMA) is required in ferromagnetic electrodes in magnetic tunnel junctions (MTJs) to achieve sufficient thermal stability in microsized magnetic random access memories (MRAMs). Although various ferromagnets such as $D0_{22}$ Mn₃Ga(Ge), $L1_0$ MnGa, and $L1_0$ FePt exhibit large PMA, MTJs with these ferromagnets did not show high tunnel magnetoresistance (TMR) ratios, which is another important requirement for MRAMs. Therefore, the mainstream of current research for PMA in MTJs is in interface-induced PMA at interfaces between ferromagnetic electrodes and tunnel barrier layers. A typical system with such interface-induced PMA is Fe(Co)/MgO, where relatively large values of interfacial anisotropy constant K_i have been observed [1,2]. Several theoretical studies have supported these results and found that the interface-induced PMA has been demonstrated in another heterostructure Fe/MgAl₂O₄ [5,6]; however, no theoretical studies have addressed this issue so far.

In this work, we investigated interfacial magnetic anisotropy at Fe/MgAl₂O₄ interface by means of the first-principles calculations [7]. We found PMA with K_i ~1.2 mJ/m², which is a little bit smaller than that of the Fe/MgO with a similar barrier thickness (K_i ~1.5-1.7 mJ/m²). By carrying out the second-order perturbation analysis on the PMA (Fig. 1), we clarified that the difference in K_i between Fe/MgAl₂O₄ and Fe/MgO comes from the different contributions from spin-flip scattering terms. In order to find a way to enhance K_i in Fe/MgAl₂O₄, we further considered tungsten (W) insertion into the interface of Fe/MgAl₂O₄. A giant value of K_i (K_i >3.0 mJ/m²) was obtained by inserting 5 layers of W into the interface.

Fig.1. Results of the second-order perturbation analysis on the interfacial PMA in Fe/MgAl₂O₄.

This work was partly supported by the Grant-in-Aid for Scientific Research (S) (Grant No. 16H06332) and (B) (Grant No. 16H03852), NIMS MI²I and by the ImPACT Program.

- [1] S. Ikeda et al., Nat. Mater. 9, 721 (2010).
- [2] J. W. Koo et al., Appl. Phys. Lett. 103, 192401 (2013).
- [3] K. Nakamura et al., Phys. Rev. B 81, 220409(R) (2010).
- [4] A. Hallal et al., Phys. Rev. B 88, 184423 (2013).
- [5] J. Koo, H. Sukegawa, and S. Mitani, Phys. Status Solidi RRL 8, 841 (2014).
- [6] Q. Xiang et al., Appl. Phys. Express 11, 063008 (2018).
- [7] K. Masuda and Y. Miura, arXiv: 1803.10428.