Radiation pattern measurement of a dielectric cuboid antenna in quasi－millimeter wave band

Gifu University ${ }^{1}$ ，Tomsk State University ${ }^{2}$
${ }^{\circ}(\mathrm{M} 1)$ Kazuki Horio ${ }^{\mathbf{1}}$ ，（B）Yuuto Samura ${ }^{\mathbf{1}}$ ，Igor Vladilenovich Minin ${ }^{2}$ ， Oleg Vladilenovich Minin ${ }^{2}$ ，and Shintaro Hisatake ${ }^{1}$ E－mail：hisatake＠gifu－u．ac．jp

Introduction

In recent years，the development of large capacity wireless communication technology using millimeter wave and terahertz wave has been remarkable．Especially for antennas，it is preferable to have a higher directivity and a higher gain．In this paper，we propose a dielectric cuboid antenna．For the proof－of－concept，we measured the radiation pattern of the dielectric cuboid antenna in the 24 GHz band and compeered it with that of a horn antenna with the same dimension．

Measurement

Figure 1 （a）and（b）show the dielectric cuboid antenna and horn antenna，respectively．The dielectric cuboid antenna is made of Teflon $(\varepsilon=2.1)$ and has a protrusion for insertion and fixation in the WR － 42 waveguide．The length from the end surface of the waveguide to the antenna aperture is 17 mm ． The antenna aperture size is $15 \mathrm{~mm} \times 15 \mathrm{~mm}$ ．We measured the near field pattern of the antennas based on the nonpolarimetric electrooptic frequency down conversion technique［1］and calculated the radiation pattern based on the Fourier transform．

Figure 2 shows the normalized radiation patterns of the H plane．The -3 dB beam width of the horn antenna is 58.4° whereas that of the dielectric cuboid antenna is 39.4° ．We confirmed that the directivity of the dielectric cuboid antenna is higher than that of the horn antenna．

Fig．1．Dimensions of the antennas．

Fig．2．Radiation pattern of the antennas in H plane

Reference

［1］S．Hisatake et al．，Scientific Reports，7， 9203 （2017）．

