GaN 系ヘテロ構造デバイスのイオン注入素子分離

Study on Device Isolation of GaN-based Heterostructure Devices by Ion Implantation

豊橋技術科学大学¹,アリエースリサーチ有限会社²

⁰中村 健人¹, 馬場 真人¹, 岡田 浩¹, 古川 雅一², 関口 寛人¹, 山根 啓輔¹, 若原 昭浩¹

Toyohashi University of Technology¹, Aries Research Limited Company²

^oK. Nakamura¹, M. Baba¹, H. Okada¹, M. Furukawa², H. Sekiguchi¹, K. Yamane¹, A. Wakahara¹

E-mail: nakamura-k@int.ee.tut.ac.jp, okada@las.tut.ac.jp

窒化ガリウム(GaN)を用いた高電子移動度トランジスタ(HEMT)等を組み合わせてワンチップ上で形成す ることで、高機能な電力変換装置の小型・省電力化が期待できるが、そのためにはデバイス同士の良好な 素子分離を行う重要となる。イオン注入技術により高抵抗層を導入する素子分離では、段差の無い素子分 離や、軽元素であるホウ素イオンの注入では低い加速電圧で GaN の深部までの注入が可能であり[1]、集積 システム応用に適した良好な素子分離が期待できる。しかし、GaN 系へテロ構造のイオン注入による素子

分離は、注入条件や注入後の熱処理温度な
どの条件依存性には十分な知見が得られOhmic contactていない。本研究では、AlGaN/GaN/AlGaNPassivation layer -
Undoped AlGaN -
Undoped AlGaN -
400 nmダブルヘテロ(DH)構造を用いたトランジUndoped AlGaN -
400 nm子分離した素子を作製し、素子分離領域で
のリーク電流の評価やデバイスの電気的
特性の評価を行った。Undoped GaN -
Undoped GaN -
Undoped GaN -
Undoped GaN -
Undoped GaN -
Undoped GaN -

Fig.1 に素子分離後リーク電流を評価す るために作製した DH 構造の断面図を示す。 ホウ素イオン注入条件は SRIM でシミュレ ーションを行い、表面から 400 nm 深さま でのホウ素濃度が 10^{17} cm³以上なるように 注入を行った。イオン注入後の熱処理を 1000 Cの NH₃+N₂雰囲気で 2 分間行った。 最後に電極形成を行い、電気的特性を測定 した。

Table 1 にホール効果の結果を示す。イオ ン注入による素子分離では、キャリア濃度 及び移動度の低下はほとんど見られなか った。続いて Fig.2 に素子分離領域におけ るリーク電流ー印加電圧の特性を示す。印 加電圧を 100 V まで変化させた時、リーク 電流が 10⁻⁵ mA/mm まで抑制され、他のイ オン注入による素子分離の効果と同程度 以上の高抵抗層が実現できた。

- 謝辞:本研究は JSPS 科研費(JP17K06383)お よび立松財団、日比科学技術財団の支 援を受けた。
- Y. Jiang et al., Semicond. Sci. Technol. 29, 055002 (2014).

Fig.1 Schematic cross section of double-hetero structure formed ion implantation region.

Table 1 Result of Hall effect for 2DEG of outside of isolation region by ion implatation.

	2DEG
Sheet resistance [ohm/sq]	581
Electron density [cm ⁻²]	8.4 × 10 ¹²
Electron mobility [cm ² /Vs]	1274
10 ⁻⁴ E	
10 ⁻⁵	
E 10 ⁻⁶	
10 ⁻⁹	
40-10	W= 170 µm
	L=10 µm
10 ⁻¹¹	-
0 10 20 30 40 50 60	0 70 80 90 100
Bias [V]	

Fig.2 Leakage current on the isolation region by ion implantation.