Voltage-controlled magnetic anisotropy in ultrathin nickel 阪大院基礎工¹,東大物性研², JASRI³,阪大 CSRN⁴,
[°]河辺健志^{1,2},宮風里紗¹,塚原拓也¹,小谷佳範³,豊木研太郎³, 後藤穣^{1,4},中村哲也³,鈴木義茂^{1,4},三輪真嗣^{1,2,4}
Osaka Univ.¹, Univ. Tokyo², JASRI³, Osaka Univ. CSRN⁴
[°]T. Kawabe^{1,2}, R. Miyakaze¹, T. Tsukahara¹, Y. Kotani³, K. Toyoki³, M. Goto^{1,4}, T. Nakamura³, Y. Suzuki^{1,4} and S. Miwa^{1,2,4}
E-mail: kawabe@spin.mp.es.osaka-u.ac.jp

Voltage-controlled magnetic anisotropy (VCMA) in 3*d*-transition metals has been intensively studied [1]. Recently, it has been reported that a Co/MgO, where one electron is added to 3*d*-orbitals of Fe, shows larger VCMA (~80 fJ/Vm) than that of Fe/MgO(~30 fJ/Vm) [2]. In this study, we have characterized the VCMA effect and the voltage-induced changes of magnetic moments in a Ni/MgO, where one electron is added to 3*d*-orbitals of Co.

We fabricated magnetic tunnel junction devices with Fe(0.3 nm)/Ni(0.14 nm)/MgO(1.4 nm)/Fe(10 nm) multilayer, and analyzed the VCMA effect. Compared to the VCMA in Fe/MgO system (~30 fJ/Vm), Ni/MgO system shows small (~10 fJ/Vm) but clear VCMA effect. For the characterization of magnetic moments of Ni, a tunnel junction with an Fe(0.3 nm)/Ni(0.14 nm)/MgO(2 nm)/SiO₂(5 nm) was prepared as shown in Fig. 1. We measured X-ray absorption and its X-ray magnetic circular dichroism (XMCD) around Ni- $L_{2,3}$ edges at BL25SU, SPring-8. Figure 2 shows the X-ray absorption and its XMCD spectra measured by partial fluorescence yield methods. We found that bias-voltage changes the XMCD spectra, which suggests that magnetic moments of Ni were modulated by the bias-voltage. A part of this work was supported by JSPS KAKENHI (JP18H03880, JP26103002) and ImPACT program.

Fig. 1 Sample structure

Fig. 2 X-ray absorption and XMCD spectra

[1] T. Maruyama *et al.*, Nature Nanotech. **4** 158 (2009).

[2] T. Kawabe et al., Phys. Rev. B 96 220412(R) (2017).