Anomalous Hall Effect in Epitaxial Thin Films of Mn₂VAl Full-Heusler Alloy °K. Fukuda, M. Oogane, M. Tsunoda, and Y. Ando (Tohoku Univ.) E-mail: fukuda@mlab.apph.tohoku.ac.jp

Mn-based full-Heusler ferrimagnet, Mn_2VAl is a promising source for spin injection because of its high spin polarization and low magnetization, however, the magneto-transport properties of the thin films have scarcely been reported. Mn_2VAl may exhibit specific behavior in anomalous Hall effect (AHE) as compared to well-studied Co-based Heusler alloys because the DOS in spin-down electrons for Mn_2VAl consists of the *d* orbital band at the Fermi level [1]. In this study, AHE in epitaxial thin films of Mn_2VAl was investigated.

50-nm-thick Mn₂VAl films were epitaxially grown on MgO (001) single-crystal substrates using a magnetron sputtering technique with various substrate temperatures (T_s). AHE was measured in the 10-300 K temperature range using DC four-probe method of a Quantum Design physical properties measurement system. The Hall resistivity (ρ_{xy}) and the longitudinal resistivity (ρ_{xx}) were simultaneously measured. An external magnetic field (H) of up to 50 kOe was applied perpendicular to (001) film plane, and electric current was applied to Mn₂VAl[100] direction. The anomalous Hall resistivity (ρ_{AH}) was obtained from a ρ_{xy} vs.

H curve by extrapolating the linear part of ρ_{xy} to H = 0.

Fig. 1 shows (a) dependence of ρ_{xy} and ρ_{xx} on *H* in the film with $T_s = 600^{\circ}$ C and (b) dependence of ρ_{AH} and ρ_{xx} at H = 50 kOe on T_s . At $T_s = 300^{\circ}$ C and 700° C, the magnitude of ρ_{AH} was quite low because the film with $T_s =$ 300° C has no magnetization and the film with $T_s = 700^{\circ}$ C grew like island [2], which resulted in high ρ_{xx} . The ρ_{AH} took maximum at $T_s = 600^{\circ}$ C, and this trend was similar to the dependence of order parameter (or magnetization) on T_s [2]. The maximum ρ_{AH} of Mn₂VAl was about 15 times as high as that of 30-nm-thick epitaxial film of a Co-based Heusler alloy, Co₂Fe_{0.4}Mn_{0.6}Si ($\rho_{AH} = 0.126 \ \mu\Omega \cdot \text{cm}, \ \rho_{xx} = 48.8 \ \mu\Omega \cdot \text{cm}$ at $T_{\text{meas.}} = 300 \text{ K}$). This relatively high ρ_{AH} of Mn₂VAl may be caused by *d* band at the Fermi level.

This study was partially supported by the Center for Spintronics Research Network and Grant-in-Aid for JSPS Research Fellow.

[1] I. Galanakis *et al.*, Phys. Rev. B **75**, 092407 (2007).
[2] K. Fukuda *et al.*, IEEE Trans. Magn. **53**, 2600304 (2017).

Fig. 1 (a) Dependence of ρ_{xy} and ρ_{xx} on *H* at $T_{\text{meas.}} = 300$ K in the film with $T_{\text{s}} = 600^{\circ}$ C and (b) T_{s} dependence of ρ_{AH} and ρ_{xx} (at H = 50 kOe) at $T_{\text{meas.}} = 300$ K.