Metal organic framework (MOF) derived encapsulated N-doped graphene hybrid as efficient multifunctional catalyst

Barun Kumar Barman,1, 2 Tadaaki Nagao2, 3 and Karuna Kar Nanda1

1Materials Research Centre, Indian Institute of Science (IISc), Bangalore, India
2International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
3CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan

E-mail: BARMAN.Kumarbarun@nims.go.jp

Pt is known to be the state-of-the-art catalyst for oxygen reduction reaction (ORR) as well as for hydrogen evolution reaction (HER) which can also be used for the hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Quest is on to find a suitable catalyst that can replace Pt to circumvent the problem associated with it. Here, we demonstrated a facile and green strategy to fabricate a novel non-precious nanoalloy encapsulated in N-doped graphene layers (CoFe1−x/N–G) by pyrolysis of metal organic framework (MOF) and their catalytic activity towards ORR, HER and hydrogenation of 4-NP (Scheme 1). Intensive studies have been carried out to elucidate the role of alloying and N-doping. Interestingly, the activity is found to be dependent on the amount of Co in CoFe core and N doping in graphene layers for all catalytic activity. Similar onset potential with better current density as compared to the benchmark precious Pt/C catalyst in alkaline medium, have been achieved towards ORR activity. They also show efficient and highly stable HER activity and very efficient and magnetically separable catalyst towards hydrogenation of 4-NP to 4-AP. Overall, the non-precious nanostructures can be exploited as multi-functional catalysts in fuel cells, hydrogen storage systems and waste water-treatment instead of the expensive Pt catalysts.

Schematic illustration for the synthesis of MOF derived nanoalloy encapsulated in N-dope graphene layers.

References