## Electrochemical formation of Ni-Si alloys for the application as anode-materials in lithium-ion-battery

筑波大学<sup>1</sup>, Univ. Tunis-El-Manner<sup>2</sup>,国立研究開発法人物質・材料研究機構<sup>3</sup> · Muhammad Monirul

Islam<sup>1</sup>, Said Hajer<sup>1,2</sup>, Imane Abdelloui<sup>1</sup>, 秋本 克洋<sup>1</sup>, Ahmed Hichem Hamzaoui<sup>2</sup>, 深田 直樹<sup>1,3</sup>,

## 櫻井 岳暁<sup>1</sup>

Tsukuba Univ. <sup>1</sup>, Univ. Tunis-El-Manner <sup>2</sup>, NIMS<sup>3</sup> <sup>o</sup> Muhammad Monirul Islam<sup>1</sup>, Said Hajer<sup>1,2</sup>,

Imane Abdelloui<sup>1</sup>, Katsuhiro Akimoto<sup>1</sup>, Ahmed Hichem Hamzaoui<sup>2</sup>, Naoki Fukata<sup>1,3</sup>, Takeaki

## Sakurai<sup>1</sup>

## E-mail: islam.monir.ke@u.tsukuba.ac.jp

Recently silicon (Si)-based materials with highest-known theoretical charge capacity of 4200 mAh/g, have been considered as promising anode materials in lithium-ion battery (LiB). Specially, Si-metal based (Carbon, nickel, iron etc.) nano-composites have drawn particular attention as it can effectively suppress volume expansion due to free space surrounding the nano-structures, and thus improve life cycle of the LiB. In this paper, we have reported a low-cost electrochemical route for the formation of Ni-Si based alloys on Ni-substrates obtained through electrochemical reduction of silica powder (SiO<sub>2</sub>).

Electrodeposition of Ni-silicides has been carried out in a  $Al_2O_3$ - crucible placed inside a quartz electrochemical cell equiped with three-electrode system. Graphite has been used as counter electrode (CE) as well as reference electrode (RE), while Ni-sheet was used as the working electrode (WE) as well as substrate for



Fig. 1 (a). Room temperature Raman spectra of electrodeposited Ni-Si layer deposited with potential, E = -0.75 V vs. graphite RE; (b) X-ray diffraction (XRD) pattern of electrodeposited Ni-Si layer.

the electrodeposition. Electrochemical analysis has been done under Ar-gas at  $860^{\circ}$  Celsius using CaCl<sub>2</sub> molten salt. Chronoamperograms (CA) has been done at constant potential (E) applied between Ag-substrate (WE) and graphite reference electrode. Cyclic voltammetry (CV), and all the constant potential electrolysis were carried out with an HSV-110 potentiometer (Hokuto Denko, Japan).

Fig. 1 (a) shows Raman spectra of an electrodeposited Ni-Si layer on Ni-substrate deposited with potential, E = -0.75 Volt, applied between the Ni-substrate and Graphite-RE. A peak around ~ 318 cm<sup>-1</sup> together with appearance of broadened peaks in between 350~ 500 cm<sup>-1</sup> suggest formation of Ni-Silicides on the Ni-substrate. X-ray diffraction (XRD) pattern (Fig. 1 (b)) also supports formation of Ni-Si alloys on Ni-substrate. Optical and structural properties of the electrodeposited Ni-Si layers will be studied in relation to the effect of various reduction potential applied during electrochemical reduction of SiO<sub>2</sub> and discussed.