Smart-Cut 法を用いて作製した Ge-on-Insulator の極性変化

Polarity Change of Ge-on-Insulator Fabricated by using Smart-Cut Technique

九大・大学院総合理工学府・研究院¹. 九大・グローバルイノベーションセンター². 中国科学院·上海微系统与信息技术研究所³

⁰仲江 航平¹, 薛 飛達¹, 山本 圭介¹, 王 冬¹, 中島 寬², Miao Zhang³, Zhongying Xue³, Zengfeng Di³ Interdisciplinary Graduate School of Engineering and Sciences, Kyushu Univ.¹, GIC, Kyushu Univ.², Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences³

^OK. Nakae¹, F. Xue¹, K. Yamamoto¹, D. Wang¹, H. Nakashima², M. Zhang³, Z. Xue³, Z. Di³

E-mail: 2ES17022Y@s.kyushu-u.ac.jp

1. はじめに 近年、ULSI の高移動度チャネル材料や近赤外域光材料として Ge が注目されている。 Ge 電子/光デバイスを実用化する為には、Ge の狭バンドに起因する大きなリーク電流低減の必要 性や既存の Si プラットフォーム上への集積化の観点から、薄膜 Ge 結晶が絶縁膜を挟んで Si 基板 上に形成された Ge-on-Insulator(GOI)構造が必須である。GOI の作製手法として、欠陥の少ない高 品質単結晶 GOI が得られる Smart-Cut 法[1]が適しており、Smart-Cut 法を用いて作製された p-GOI やそのデバイス応用の報告がなされている一方[1]、n-GOIの報告例は少ない。Smart-Cutのために Geに打ち込む H+がアクセプタとして振る舞うとの報告もあり[2,3]、このことが n-GOI の作製を 困難にしている可能性がある。今回我々はバルク n-Ge を用いて GOI を Smart-Cut 法で作製し、熱 処理による GOI の極性変化をホール効果とショットキー特性評価から調査した。

2. 実験・結果・考察 ピーク深さ約 800 nm に H⁺イオン注入を行い、ALD で Al₂O₃(3 nm)を堆積 した n-Ge(100)基板 (N_D=9×10¹⁵ cm⁻³) と、熱酸化 SiO₂(50 nm)を成膜した n-Si(100)基板とを大気中 で貼り合せた。300℃-1 時間の接合強化アニールの後、400℃ で熱処理を行い H+注入深さピーク で Ge を破断した。希 H₂O₂エッチングと CMP により、GOI 層を薄膜化 (~260 nm)・平坦化した。

・ホール効果測定:GOI(1×1 cm²)の四隅にオーミック電極(TiN)を形成した後、N2雰囲気中に て 400~500℃ の熱処理を施した。その後、ホール効果による伝導型・移動度 μ・キャリア密度 N の測定を行った。Figure 1 に熱処理なし・400℃・500℃ 熱処理を行った GOI のµおよびNをまと めた。比較として、元のバルク n-Ge の値も示している。熱処理前のキャリアは電子であるが、熱 処理後ではキャリアがホールになっており、熱処理により n-GOI の極性が変化している。

・ショットキー特性評価: Figure 2 に示す横型ショットキー構造を用いて GOI 基板の電気特性評 価を行った。リフトオフ法を用いて内側電極 (Pt, n-Ge に対して整流性) および外側電極 (TiN, n-Ge に対してオーミック性)を形成した。電極形成後は、ホール効果測定試料と同様の熱処理を施し た。Figure 2 に横型ショットキー構造の電流密度-電圧(J-V)特性を示す。熱処理温度が高くなる につれ整流性が失われている(n→p の極性変化を意味する)が、400°C 熱処理を行った GOI はわ ずかに整流性が残されており、この点はホール効果測定の結果と異なる。Figure 3 に熱処理なしと 400℃ 熱処理を行った GOI の 1/C²-V 特性、およびプロットの傾きから算出したドーピング濃度 *N*_Dを示す。400℃ 熱処理を行った GOI の 1/C²-V の傾きの直線性は良くない。このことから GOI の N_Dが深さ方向に均一ではなく、深い部分は低 N_Dとなっている可能性がある。

参考文献 [1] J. Kang et al., MSSP 42 259 (2016). [2] Y. W. Low et al., ECS trans. 28 375 (2010). [3] Van de Walle et al., Nature 423 625 (2003).

Fig. 1 Summary of carrier concentration and mobility evaluated by Hall effect measurement.

Fig. 3 $1/C^2$ -V characteristics of lateral Schottky contacts on n-GOI.