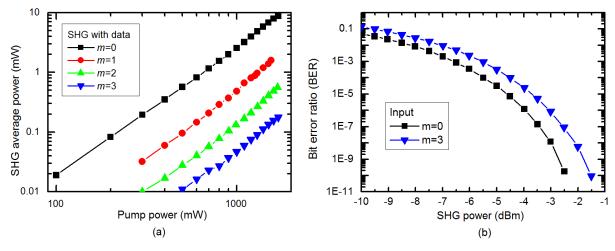
光渦の光角運動量倍加通信


Telecommunication using optical angular momentum doubling of optical vortices 情通機構 ¹,東海大 IIST²,沖電気 ³ °浜崎淳一 ¹,呂國偉 ²,稲垣恵三 ¹,岸本直 ^{1, 3},小川洋 ¹, 関根徳彦 ¹,笠松章史 ¹,山本直克 ¹,山口滋 ²,寶迫巌 ¹

NICT ¹, IIST Tokai univ.², OKI³ °J. Hamazaki¹, G. -W. Lu², K. Inagaki¹, T. Kishimoto^{1,3}, Y. Ogawa¹, N. Sekine¹, A. Kasamatsu¹, N. Yamamoto¹, S. Yamaguchi², and I. Hosako¹

E-mail: hamazaki@nict.go.jp

近年、光角運動量 (OAM) を有する光渦 (OV) を用いたデータ伝送が注目されている[1]。OV は、波面に位相分布 $\exp(im\varphi)$ [φ は方位角、m は整数、螺旋状の等位相面]を持つため、1 光子あたり OAM = $m\hbar$ を持つ[2]。また OAM が異なる OV は、波動関数が直交しているため、光の新たな自由度として扱える。特に通信分野においては、OAM 多重化を波長、振幅および位相とともに使用することによって大容量データ伝送が期待され、最近では OAM を 12 多重化させることにより、自由空間で 100 Tbit / s のデータ伝送が実験的に報告されている[1]。我々は、OAM を利用した通信を行う際に重要となる光スイッチング技術(OAM 変換)に注目し、研究を行っている。

本研究では、周期的分極反転ニオブ酸リチウム(PPLN)を用いてデータを載せた光渦の軌道角運動量変換(倍加)を行い、OAM 倍加の変換効率の評価、及びビットエラーレート(BER)の評価を行った。OAM 倍加の変換効率については、OAM が大きくなるほど変換低下することを確認した(図(a))。BER は、高速通信(\sim 10Gbit/s)で評価を行った(図(b))。その結果、適切にレベル設計することでエラーフリー通信が行えることが実証された。

図(a): 光渦(m=0~3)の SHG 平均強度の励起強度依存性。 図(b): ビットエラーレート (BER, m=0, 3) **参考文献**

[1] H. Huang, et al., Opt. Lett. 39, 197 (2014).

[2] L. Allen, S. M. Barnett and M. J. Padgett, Optical angular momentum. (CRC Press, 2003).