SUS 基板上に作製した MgB₂薄膜の超伝導特性と微細組織

Superconducting properties and microstructures for MgB₂ thin films grown on SUS tapes

京大院工ネ科1,日立2,電中研3

 $^{\circ}$ 北村 直也 1 ,出店 純弥 1 ,堀井 滋 1 ,岩中 拓夢 2 ,楠 敏明 2 ,一瀬 中 3 ,土井 俊哉 1

Kyoto Univ.¹, Hitachi Ltd.², CRIEPI³

N. kitamura¹, J. Demise¹, S. Horii¹, T. Iwanaka², T. Kusunoki², A. Ichinose³, T. Doi¹ E-mail: kitamura.naoya.74m@st.kyoto-u.ac.jp

1. はじめに

MgB2 は金属系超伝導体の中で最高の臨界温 度($T_c = 39 \text{ K}$)を有し、液体水素や冷凍機を利用 した 20 K 近傍での実用化が期待されている。ま た、MgB2には組成制御が比較的容易であるこ と、構成元素のMgとBがいずれも資源的に豊 富であること、軽量であること(低比重)等の 特長もある。我々は電子ビーム(EB)蒸着法でSi 基板上に作製した MgB2 薄膜が高い臨界電流密 度($J_c = 0.6 \text{ MA/cm}^2$ @ 20 K, 5 T)を示すことを報 告した[1]。強磁場発生用の超伝導線材の実用化 には、優れた歪み特性を有することが必要であ る。そこで本研究では、基板として高強度の SUS304 を用い、MgB₂ 薄膜をEB 法で作製した。 また、作製した MgB2 薄膜について成膜条件と T_c および J_c の関係を調べ、Si、Cu、Al 上の MgB_2 膜と比較した。また、Jcの歪み依存性について も調べた。

2. 実験方法

MgB2薄膜の作製にはEB法を用いた。超高真 空中で Mg および B 原料にそれぞれ電子ビーム を照射し、加熱したSUS 基板上に300s蒸着し、 MgB₂/SUS 試料を得た。なお、原料には Mg 鋳 造塊と結晶性 B を用いた。基板の加熱は裏面に 黒体塗料を塗布し、赤外線ランプを用いて加熱 した。成膜中にはB原料からの輻射熱によって 基板の成膜面が加熱され、基板温度が上昇する ので成膜中の基板温度は基板材料に依存した 時間変化を示すと考えられる。本研究では便宜 上、成膜直前の基板温度を成膜温度(T₄)とした。 生成相の同定には X 線回折(XRD)法を、化学

組成の決定には誘導結合プラズマ(ICP)発光分 光分析を、 T_c 、 J_c の決定には四端子法を用いた。 また、薄膜断面の微細組織および組成分析には それぞれ STEM および EDX を用いた。

3. 結果と考察

XRD 測定から、 MgB_2 膜はいずれの試料でも c軸配向していることがわかった。Table 1 に

MgB₂/SUS、MgB₂/Si、MgB₂/Cu 及び MgB₂/Al の T_c と成膜温度を示す。 MgB_2/SUS の T_c (33.5K) はMgB₂/Siよりも低いが、MgB₂/Cuおよび MgB₂/Alと比較すると高い。

Fig. 1に MgB₂/SUS の J_cの磁場依存性を示す。 なお、Table 1 に示した MgB₂/Si、MgB₂/Cu お よび MgB_2/Al の J_c の磁場依存性も併せて示し た。MgB₂/SUSではMgB₂/CuおよびMgB₂/Al に比べて高い J_c が得られ、低磁場側で MgB_2/Si よりも高い J_c を実現した。

当日はさらに断面 STEM 像と EDX について の考察結果、成膜条件と超伝導特性の関係、Jc の歪み依存性についても報告する予定である。

Table 1 T_c s of MgB₂ films.

sample	T _d (°C)	$T_{\rm c}\left({\rm K}\right)$
MgB_2/SUS	262	33.5
MgB ₂ / Si	248	36.1
MgB_2/Cu	281	30.6
MgB_2/Al	266	31.1

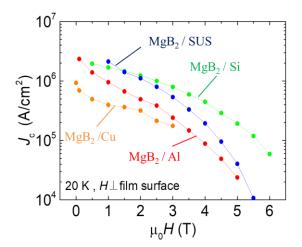


Fig. 1 J_c - $\mu_0 H$ curves at 20 K for MgB₂ films grown on SUS, Cu, Al and Si.

4. 参考文献

[1] 下田ら、平成28年春季応用物理学会 21a-W834-4.