積層構造が TFA-MOD (Y_{0.77}Gd_{0.23})Ba₂Cu₃O_y線材の 縦磁場中超伝導特性に及ぼす影響

The effect of multilayered structure on the J_c in longitudinal magnetic field for

TFA-MOD ($Y_{0.77}Gd_{0.23}$)Ba₂Cu₃O_y coated conductors

成蹊大¹, 九工大²

○平井康太」,佐藤慶一」,西村隼1佐藤迪夫1,三浦正志1,木内勝2

Seikei University¹, Kyushu Institute of Technology²

^O<u>Kota Hirai</u>¹, Keiichi Sato¹ Jun Nishimura¹ Michio Sato¹, Masashi Miura¹

and Masaru Kiuchi²

E-mail:dm176318@cc.seikei.ac.jp

1. はじめに

液体窒素下で使用可能な REBa2Cu3Ov(REBCO)線材は、高い 臨界電流を示すため電力機器応用が期待されている。特に、 太陽光発電や風力発電などの再生可能エネルギーの普及によ り損失なく大容量電流を送電可能な直流超伝導ケーブルが求 められている。その中でも、九工大の松下照男名誉教授によ り提案されている縦磁界利用直流超伝導ケーブルは、縦磁界 を利用しない従来ケーブルに比べ、大容量送電が可能である [1]。REBCO 線材を縦磁界利用直流超伝導ケーブル応用する ためには、縦磁場中臨界電流密度(Jc)を向上させる必要がある。 米国ロスアラモス国立研究所[2]や名古屋大学[3]の研究によ り人工欠陥導入や構造が REBCO の縦磁場中 J。を向上に有効 であることが確認されている。これまで、我々は、 Trifluoroacetates Metal Organic Deposition(TFA-MOD)法を用い て、BaZrO₃(BZO)ナノ粒子を人工欠陥として導入した (Y_{0.77}Gd_{0.23})Ba₂Cu₃O_v((Y,Gd)BCO)線材の横磁場及び縦磁場中 J。特性が向上することを報告してきた[4,5]。しかしながら、 TFA-MOD 法を用いて作製した(Y,Gd)BCO 層と BZO ナノ粒子 を導入した (Y,Gd)BCO (+BZO) 層を交互に積層させた TFA-MOD 線材の縦磁場中超伝導特性に及ぼす影響は明らか になっていない。そこで、本研究では縦磁場中 J。特性向上を 目的に、BZO ナノ粒子を導入し、異なる構造を有した TFA-MOD 法(Y,Gd)BCO 線材を作製し、BZO ナノ粒子の密度 及び構造が縦磁場中超伝導特性に及ぼす影響を検討した。

2. 実験方法

本研究では、金属基板上に TFA-MOD 法を用いて(Y,Gd)BCO 線材、+BZO線材、(Y,Gd)BCO 層と+BZO 層を交互に積層させた ML-(Y,Gd)BCO/+BZO線材を作製した(Fig.1 参照)。本焼成後の超 伝導層の膜厚は、0.2 [µm]である。作製した線材の結晶性を X線 回析法、磁場中 J_c特性は、四端子法を用いて測定した。

3. 結果

Table 1 にそれぞれの線材の臨界温度(T_c)及び自己磁場 $J_c(J_c^{sf})$ を示す。Table 1 より、BZO ナノ粒子の添加及び構造が T_c には影 響を及ぼさないことが分かる。一方、自己磁場 J_c に関しては、 それぞれ異なる特性を示すことが分かる。Fig.2 に縦磁場中 J_c 特 性 (77 K)を示す。Fig.2 より積層構造を有した ML-(Y,Gd)BCO/+BZO線材は、+BZO及び(Y,Gd)BCO線材に比べ 高い縦磁場下 J_c 特性を示すことが分かる。

当日の発表では、積層構造が縦磁場中超伝導特性に及ぼす影響 について報告する。
 Table 1 Crystallinity and superconducting properties.

Sample	$T_{\rm c}[{\rm K}]$	$J_{\rm c}^{\rm s.f.}$ [MA/cm ²]@77K
Y,Gd)BCO	91.1	4.51
+BZO	90.5	4.87
ML-(Y,Gd)BCO/+BZO	9.08	5.37

(a) (Y,Gd)BCO (b) +BZO (c) ML-(Y,Gd)BCO/+BZO

Fig.1 Schematic drawing of (a) (Y,Gd)BCO, (b)+BZO and ML-(Y,Gd)BCO/+BZO CCs.

Fig.2 Longitudinal magnetic field dependence of J_c at 77 K for various TFA-MOD (YGd)BCO CCs.

謝辞

本研究は、パワーアカデミー特別推進研究及び科研費 (17H03239 及び 17K18888)の助成を受け実施したものである。

参考文献

- [1] T. Matsushita et al., AIP Conf. Proc., 1574 (2014) 225.
- [2] B. Maiorov et al., IEEE Trans. Appl. Supercond., 17 (2007) 3697.
- [3] K. Sugihara et al., Supercond. Sci. Techol., 28 (2015)104004.
- [4] M. Miura et.al., Scientific Reports 6 (2016) 2043.
- [5] T. Kusama et al., CCA(2016. 9, USA).