TFA-MOD 法(Y_{0.77}Gd_{0.23})Ba₂Cu₃O_y+BaZrO₃/CeO₂/R-Al₂O₃薄膜 の磁場中超伝導特性

The in-field property of TFA-MOD (Y_{0.77}Gd_{0.23})Ba₂Cu₃O_y films on CeO₂ buffered R-Al₂O₃ substrates

成蹊大1

○<u>鎌田哲徳</u>¹, 奥亮太¹, 作間啓太¹, 三浦正志¹

Seikei University¹

 $^{\odot}$ <u>Yoshinori Kamada</u>¹,Ryota Oku¹,Keita Sakuma¹, Masashi Miura¹

E-mail: dm186305@cc.seikei.ac.jp

1. はじめに

REBa₂Cu₃O_v((REBCO)薄膜は、高い磁場中臨界電流密度(J_c)と 低い表面抵抗(Rs)を示すため NMR ピックアップコイルや超伝 導フィルタとしての応用が期待されている。特に Trifluoroacetates-metal organic deposition (TFA-MOD)法を用いて 作製した REBCO 薄膜は、他の手法と比べて低コストであり高 い超伝導特性を示すため応用が期待されている。近年、我々は 上記のデバイス応用に適している低い誘電率を持つ R-Al₂O₃基 板上の CeO2 バッファの結晶性を向上させることにより (Y_{0.77}Gd_{0.23})Ba₂Cu₃O_v((Y,Gd)BCO)薄膜の自己磁場 J_c(J_c^{s.f.})が向上 することを報告した[1]。しかし、磁場中では急激にJ。が低下す るため、磁場中 J_c向上に向けて磁束ピンニング点の導入が必要 である。これまで我々は TFA-MOD 法を用い BaMO₃(M=Hf, Zr 等)ナノ粒子を人工欠陥として導入することにより(Y,Gd)BCO 線材の磁場中J。特性が向上することを報告してきた[2,3]。しか し、BaMO₃ ナノ粒子が CeO₂ バッファ R-Al₂O₃ 基板上の TFA-MOD法(Y,Gd)BCO薄膜の磁場中Jc特性に及ぼす影響は明 らかになっていない。

そこで、本研究では磁場中 J_c特性向上を目的に BaZrO₃(BZO) ナノ粒子を導入した(Y,Gd)BCO((Y,Gd)BCO+BZO)薄膜を作製 し、BZO ナノ粒子が *R*-Al₂O₃ 基板上の(Y,Gd)BCO 薄膜の磁場中 J_c特性に及ぼす影響を検討した。

2. 実験方法

本研究では、as-grown-CeO₂/*R*-Al₂O₃及び 1000 ℃ アニール処 理した CeO₂/*R*-Al₂O₃ 基板上に TFA-MOD 法を用いて (Y,Gd)BCO及び(Y,Gd)BCO+BZO 薄膜を作製した。本焼成後の 超伝導層の膜厚は、0.3 [µm]である。BZO 添加量は 12 [vol.%] とした。作製した薄膜の結晶性を X 線回折法、磁場中 J_c 特性は、 四端子法を用いて測定した。

3. 結果

Fig.1 (a)-(c)に(Y,Gd)BCO/as-grown-CeO₂/*R*-Al₂O₃、(Y,Gd)BCO /annealed-CeO₂/*R*-Al₂O₃及び(Y,Gd)BCO+BZO/annealed-CeO₂ /*R*-Al₂O₃ 薄膜の転移温度(T_c)、面内配向性($\Delta\phi_{rGd}$)及び $J_c^{s.f.}$ (77K) を示す。Fig.1(a)よりバッファ層アニール有無及び BZO 添加有 無にかかわらず T_c はほぼ同程度であることが分かる。Fig.1(b) よりバッファ層アニール処理により $\Delta\phi_{rGd}$ が向上したことが分 かる。Fig.1(c)より $\Delta\phi_{rGd}$ が向上したバッファ層アニール有 (Y,Gd)BCO及び(Y,Gd)BCO+BZO薄膜は、バッファ層アニール 無(Y,Gd)BCO 薄膜に比べて高い $J_c^{s.f.}$ を示す事が分かる。また、 TFA-MOD 法では、BZO ナノ粒子を導入しても母相に対してイ ンコヒーレントに存在するため、 T_c に影響及ぼすことなくピン ニング力を向上させることができるため[3]、(Y,Gd)BCO+BZO 薄膜は最も高い $J_c^{s.f.}$ を示したと考えられる。

当日は、**BZO**ナノ粒子が(**Y**,**Gd**)**BCO**/**CeO**₂/*R*-Al₂**O**薄膜の磁場 中 *J*_c特性に及ぼす影響ついて詳細に報告する予定である。

Fig.1 (a) T_c , (b) $\Delta \phi_{YGd}$, (c) $J_c^{s.f.}$ for various TFA-MOD (Y,Gd)BCO film on CeO₂ buffered *R*-Al₂O₃ substrates

謝辞

本研究は、科研費(17H03239 及び 17K18888)の助成を受け実施したものである。

参考文献

- [1] K. Sakuma et al., Jpn. J. Appl. Phys. 57 (2018) 033102.
- [2] M. Miura et al., Scientific Reports 6 (2016) 20436.
- [3] M. Miura et al., NPG Asia Materials 9 (2017) e447.