In-Sn-Zn-O の水素化とポストアニールによる TFT 信頼性の向上 Hot-wire hydrogenation for In-Sn-Zn-O and improvement of the TFT reliability ^の柳澤 利樹¹、染谷 優太¹、清水 耕作¹(1.日大 生産工) ^oToshiki Yanagisawa¹, Yuta Someya¹, Kousaku Shimizu¹(1. Nihon Univ.) E-mail: shimizu.kousaku@ nihon-u.ac.jp

【はじめに】

我々は、酸化物 TFT の NBIS (Negative Bias Illumination Stress) 信頼性について検討してい る。これまで RCPM (Reflection Constant Photocurrent Method)の評価では、NBIS と伝導帯下 約1.5 eV の欠陥準位が顕著な相関を持っていることを明らかにしてきた。特に Vt シフトやサ ブスレッショルドスイングと相関のも確認されている。今回は、酸化物 TFT の性能低下の原 因の一つであるバックチャネル側の欠陥準位に着目し、RCPM による評価をした。RF マグネ トロンスパッタリング法にて TFT 素子を作製し、バックチャネル側の界面に水素化・酸素化 を行う。RCPM による欠陥準位の評価、及び水素化による影響を検討した。

【実験】

水素化は、原子状水素を製成するのにホットワイヤ法を用いて行った。Fig.1 は ITZO TFT の 模式図である。ITZO を熱酸化膜 SiO₂ 付き n 型シリコン基板上に堆積した。ソース・ドレ イン電極の作製前に、SiO₂を20nm堆積し、水素化を行い、直後にアニール処理を行った。

原子状水素は反応性が極めて高いため、バックチャネル側の界面より直接水素化をすると、 バルク中を劣化させる。最後に熱処理をし、水素化による影響を検討した。酸素化は、酸素 プラズマ処理にて行った。

【結果及び考察】

成膜後のアニール (annealed) と水素化後アニール (annealing after hydrogenation) を行った TFT素子のギャップ内準位評価を Fig.2 に示す。TFT素子の伝達特性を Fig.3 に示す。また図 には示していないが、酸素化をすることによってバルク抵抗が上がることが分かっている。 水素化によってバルクが劣化した際、保護膜なしでは伝導帯下~1.5 eVの欠陥準位が顕著にな る。Fig.2 より、H-W 温度 800℃、水素比 0.23 %で行うとギャップ内準位に変化はなかった。 つまり、1.5eVの欠陥を新たに形成することなくバックチャネル側の界面のみに水素化を行う ことができた (Fig.3)。またキャリア密度は、酸素含有率や水素によって大きく影響を受ける ことがわかった。今後、キャリア密度を制御することによってTFT特性を向上させるほか、酸 素や水素の影響、NBIS特性による信頼性への影響を検討する。

Fig. 1 Cross sectional view of ITZO transistor, and schematic illustration of hydrogenation process.

Characteristic.