PT 相転移による電流注入型フォトニック結晶結合ナノレーザーの発振停止と回復

Suppression and revival of oscillation of electrically pumped photonic crystal nanolasers by PT phase transition

NTT ナノフォトニクスセンタ¹, NTT 物性基礎研², NTT 先端集積デバイス研³

^O高田 健太^{1,2}, 野崎 謙悟^{1,2}, 倉持 栄一^{1,2}, 松尾 慎治^{1,3}, 武田 浩司^{1,3}, 藤井 拓郎^{1,3}, 北 翔太^{1,2}. 新家 昭彦^{1,2}. 納富 雅也^{1,2}

NTT Nanophotonics Center¹, NTT Basic Research Labs.², NTT Device Technology Labs.³

[°]Kenta Takata^{1,2}, Kengo Nozaki^{1,2}, Eiichi Kuramochi^{1,2}, Shinji Matsuo^{1,3}, Koji Takeda^{1,3},

Takuro Fujii^{1,3}, Shota Kita^{1,2}, Akihiko Shinya^{1,2}, and Masaya Notomi^{1,2}

E-mail: takata.kenta@lab.ntt.co.jp

結合周期光学系に利得と損失を交互に加えると、利得、損失レートがある大きさになった時に複数の固有モードが縮退し、光波の遍歴状態から局在状態へと相転移が起こる。この縮退点の事を特異点と呼ぶ。特に利得、損失レートが等しい条件を、空間反転と時間反転の組に対し不変な事から PT 対称 (parity-time symmetric)[1]であると言う。このような系は、利得飽和との組合せによる光アイソレーションやシングルモード発振等の特異な応答を示すため、注目されてきた[2]。一方、光回路に特異点を用いた光制御を導入するには、幅広い応答を実現する上で重要な規模の拡張性や利得、損失の制御性を両立出来るプラットフォームが必要である。そこで我々は、埋込媒質型フォトニック結晶レーザーアレイに基づく PT 対称結合共振器を提案し、その解析を行ってきた[3,4]。

今回、上記のナノレーザー二つからなる結合光学系において、特異点に起因した光学応答を実験的 に観測したため報告する。図(a)に作製素子の画像を示す。二つの InGaAsP 埋込媒質型モードギャップ 共振器が別々の InP フォトニック結晶線欠陥内に配置されており、個々の共振器モードは斜め方向に エバネッセント結合する。また個々の共振器に対しドープ層及び金属パッドが接続されており、電流 注入によるキャリア励起が独立に制御出来る。実験では、片方のレーザー(左、ch2、利得側)のパッ ド間電流 I2を高励起発振状態下で固定し、もう片方のレーザー(右、ch1、損失側)の電流 I1を発振領 域から徐々に減少させる。この条件下での素子の発光スペクトル変化を図(b)に示す。I,の減少により、 二つの結合共振器モードの内短波長のピークは、モード競合の影響を受け減衰する。長波長のピーク は I₁=5 µA 程度までは高パワーを維持するが、その付近で発振停止を示唆する急激なパワーの減少が 起こる。その後、さらなる 4 の減少による部分損失レートの増加にもかかわらず、短波長のモードが 再び発振を開始し、その波長は二つの結合共振器モードの中心へと遷移する。これは、特異点による 局在相転移(PT相転移)に起因した損失誘起レーザー発振(Loss-induced lasing) [5]を強く示唆する。 図(c)、(d)に低 I 条件下のスペクトルピークパワー及び線幅の変化をそれぞれ示す。これらは I 減少に よる長波モードのパワー減少と短波モードの急激なパワー増加、及びそれに並行した短波モードの線 幅減少を表し、発光モードのレーザー発振を裏付けている。この結果は我々が知る限り、電流注入型 結合フォトニック結晶レーザー素子における、特異点による発振停止及び回復の初の観測例である。

本研究は、JST CREST (JPMJCR15N4)により一部援助を受けた。参考文献: [1] C. M. Bender and S. Boettcher, *PRL* **80**, 5243 (1998). [2] L. Feng, R. El-Ganainy, and L. Ge, *Nat. Photonics* **11**, 752 (2017). [3] 高田, 納富. 第76回秋季応物, 16a-2A-4 (2015). [4] 高田, 納富. 第63回春季応物, 21p-S621-18 (2016). [5] B. Peng *et al.*, *Science* **346**, 328 (2014).

