Fabrication of Highly Transparent γ-AlON Ceramics from High Sinterability Powders by Using Spark Plasma Sintering Method and Hot Isostatic Pressing Post-treatment National Institute for Materials Science ¹, Xiamen University², Lihong Liu,¹ Chenning Zhang,¹ Kohsei Takahashi,¹ Toshiyuki Nishimura,¹ Hiroyo Segawa,¹ Naoto Hirosaki,¹ Rong-Jun Xie² E-mail: Liu.Lihong@nims.go.jp

Highly-transparent γ -AlON ceramics were fabricated with using γ -AlON powders synthesized from Al₂O₃ and AlN, and prepared MgAl₂O₄ as raw materials by spark plasma sintering (SPS) technique at 1800 °C for 5 min under 80 MPa pressure assisted with post-treatment of hot isostatic pressing (HIP) at 1800 °C for 2 h under 190 MPa pressure. The sintered transparent ceramic fabricated by the prepared γ -AlON powders with using MgAl₂O₄ as additive demonstrated almost even grains and no pores either at the grain boundaries or inside the grains, with a high in-line transmittance efficiency in the region of UV~visible wavelength, as high as ~80.5% at 450 nm wavelength (Figure 1), which is attributed to a contribution of the MgAl₂O₄ additive in efficiently promoting the sinterability of γ -AlON powders and finally resulting in the high densification of γ -AlON transparent ceramic.

Figure 1. In line transmittance efficiencies of γ -AlON ceramics prepared from the γ -AlON powders synthesized by using MgAl₂O₄ as Mg²⁺ source with and without HIP treatment(a), surface microstructures of γ -AlON transparent ceramic after HIP treatment at 1800 °C for 2 h under 190 MPa (b), and photographs viewing from various distances through the γ -AlON transparent ceramic fabricated by using MgAl₂O₄